8.6 解答

8.6

1. (Greenの定理) 区分的に滑らかな閉曲線$ C$を境界に持つ$ xy$平面上の有界閉領域を$ \Omega$とする.また,ベクトル場 $ {\bf F} = (P(x,y),Q(x,y))$$ C^{1}$級とする.このとき

$\displaystyle \oint_{C}{\bf F}\cdot d{\bf r} = \iint_{\Omega}(\nabla \times {\bf F}\cdot {\hat{\bf k}} dx dy$

$\displaystyle \oint_{C}Pdx + Qdy = \iint_{\Omega}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)dx dy$

が成り立つ.

(Stokes の定理)

$\displaystyle \oint_{\partial S}{\bf F}\cdot d{\bf r} = \iint_{S}(\nabla \times {\bf F}\cdot {\hat{\bf n}}dS$

(a) Greenの定理より

$\displaystyle \oint_{C}(x^2 - xy^2)dx + (y^2 - 2xy) dy$ $\displaystyle =$ $\displaystyle \iint_{\Omega}(-2y - (-2xy))dx dy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2}\int_{0}^{2}(-2y + 2xy)dx dy = \int_{0}^{2}\left[-2xy + x^2 y\right]_{0}^{2} dy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2}(-4y + 4y)dy = 0$  

(b)

$\displaystyle \nabla \times {\bf F}$ $\displaystyle =$ $\displaystyle \left\vert\begin{array}{ccc}
{\hat{\bf i}} & {\hat{\bf j}} & {\ha...
...z}\\
2xy^3 - y^2 \cos{x} & 1 - 2y\sin{x} + 3x^2 y^2 & 0
\end{array}\right\vert$  
  $\displaystyle =$ $\displaystyle {\hat{\bf k}}(-2y\cos{x} + 6xy^2 - (6xy^2 - 2y\cos{x})) = {\bf0}$  

よって,Fは保存場となり, $ \oint_{C}{\bf F}\cdot d{\bf r} = 0$

(c) $ {\bf F} = (-z^2 , xy^2 , z)$より,Stokesの定理を用いる.

$\displaystyle \nabla \times {\bf F} = \left\vert\begin{array}{ccc}
{\hat{\bf i}...
...ac{\partial}{\partial z}\\
-z^2 & xy^2 & z
\end{array}\right\vert = (0,2z,y^2)$

また, $ {\bf r} = (x,y,z) = (x,y,\sqrt{1 - (x^2 + y^2)})$より法線ベクトルを求めると

$\displaystyle {\bf r}_{x} \times {\bf r}_{y} = \left\vert\begin{array}{ccc}
{\h...
...z}\\
0 & 1 & -\frac{y}{z}
\end{array}\right\vert = (\frac{x}{z},\frac{y}{z},1)$

となる.よって
$\displaystyle \oint_{\partial S}-z^2dx + xy^2 dy + zdz$ $\displaystyle =$ $\displaystyle \iint_{\Omega}(0,2z,y^2) \cdot
{\bf r}_{x} \times {\bf r}_{y} dx dy$  
  $\displaystyle =$ $\displaystyle \int_{\Omega} (0,2z,y^2) \cdot (\frac{x}{z},\frac{y}{z},1) dx dy$  
  $\displaystyle =$ $\displaystyle \int_{\Omega} (2y + y^2)dx dy \ ここで \Omega = \{(x,y):x^2 + y^2 =1\}$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\int_{0}^{1}(2r\sin{\theta} + r^2 \sin^{2}{\theta})r dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\int_{0}^{1}(2r^2 \sin{\theta} + r^3 \sin^{2}{\theta})dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\left[\frac{2}{3}r^3 \sin{\theta} + \frac{r^4}{4} \sin^{2}{\theta}\right]_{0}^{1}d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\left(\frac{2}{3}\sin{\theta} + \frac{1}{4} \sin^{2}{\theta}\right)d\theta$  
  $\displaystyle =$ $\displaystyle \frac{1}{4}$  

2. [Gaussの発散定理] ベクトル場 $ {\bf F}(x,y,z) = (F_{1},F_{2},F_{3})$ において,区分的に滑らかな閉曲面 $ S$ で囲まれた空間の領域を $ V$ とし, $ S$ の内部から外部に向かう法線ベクトルを $ \hat{\bf n}$ とすると,

$\displaystyle \iint_{S}{\bf F} \cdot \hat{\bf n}dS = \iiint_{V} {\rm div}{\bf F} dV $

$\displaystyle \iint_{S}(F_{1}dydz + F_{2}dzdx + F_{3}dxdy) = \iiint_{V} \left(\...
...artial F_{2}}{\partial y} + \frac{\partial F_{3}}{\partial z} \right) dx dy dz $

が成り立つ.

(a) $ {\bf r} = (x,y,z)$

$\displaystyle dS$ $\displaystyle =$ $\displaystyle \Vert{\bf r}_{x} \times {\bf r}_{y}\Vert dx dy$  
  $\displaystyle =$ $\displaystyle \Vert\left\vert\begin{array}{ccc}
{\hat{\bf i}} & {\hat{\bf j}} &...
...t {\bf k}}\\
1 & 0 & z_{x}\\
0 & 1 & z_{y}
\end{array}\right\vert \Vert dx dy$  
  $\displaystyle =$ $\displaystyle \Vert(-z_{x},-z_{y},1)\Vert dx dy = \sqrt{z_{x}^2 + z_{y}^2 + 1} dx dy$  
  $\displaystyle =$ $\displaystyle \sqrt{(\frac{3x}{z})^2 + (\frac{3y}{z})^2 + 1}dx dy$  
  $\displaystyle =$ $\displaystyle \sqrt{\frac{9x^2 + 9y^2 + z^2}{z^2}} dx dy = 2\sqrt{x^2 + y^2}$  

よって
$\displaystyle \iint_{S}(x^2 + y^2)dS$ $\displaystyle =$ $\displaystyle 2\iint_{S}(x^2 + y^2)^{3/2} dx dy$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{2\pi}\int_{0}^{\sqrt{3}}r^3 r dr d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{2\pi}d\theta \int_{0}^{\sqrt{3}}r^4 dr = 2(2\pi)(\frac{9\sqrt{3}}{5})$  
  $\displaystyle =$ $\displaystyle \frac{36\sqrt{3}\pi}{5}$  

(b)

$\displaystyle {\rm curl}{\bf F} = \left\vert\begin{array}{ccc}
{\hat{\bf i}} & ...
...c{\partial}{\partial z}\\
x^2 - x & -xy & 3z
\end{array}\right\vert = (0,0,-y)$

$\displaystyle {\hat{\bf n}} = \frac{{\bf r}_{x} \times {\bf r}_{y}}{\Vert{\bf r}_{x} \times {\bf r}_{y}\Vert} = (1,0,z_{x}) \times (0,1,z_{y})$

$\displaystyle dS = \Vert{\bf r}_{x} \times {\bf r}_{y}\Vert dx dy$

より
$\displaystyle \iint_{S}{\rm curl}{\bf F} \cdot {\hat {\bf n}}dS$ $\displaystyle =$ $\displaystyle \iint_{S}(0,0,-y) \cdot
(1,0,z_{x}) \times (0,1,z_{y}) dx dy$  
  $\displaystyle =$ $\displaystyle \iint_{\Omega}\left\vert\begin{array}{ccc}
0& 0 & -y\\
1 & 0 & z_{x}\\
0 & 1 & z_{y}
\end{array}\right\vert dx dy$  
  $\displaystyle =$ $\displaystyle \iint_{\Omega}-y dx dy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\int_{0}^{2}-r\sin{\theta} r dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\sin{\theta}d\theta \int_{0}^{2}-r^2 dr = 0$  

(c) $ {\rm div}{\bf F} = (1 + z) = (1 + 4 - y^2)$より

$\displaystyle \iint_{S}{\bf F}\cdot{\hat{\bf n}}dS$ $\displaystyle =$ $\displaystyle \iiint_{V}(5-y^2)dV$  
  $\displaystyle =$ $\displaystyle \int_{0}^{3}\int_{-2}^{2}\int_{z=0}^{4-y^2}(5-y^2)dz dy dx$  
$\displaystyle \int_{0}^{3}dx \int_{-2}^{2}(5(4-y^2) - y^2 (4-y^2))dy$      
  $\displaystyle =$ $\displaystyle 6\left[20y - 3y^3 + \frac{y^5}{5}\right]_{0}^{2}$  
  $\displaystyle =$ $\displaystyle 6(40 - 24 + \frac{32}{5}) = \frac{672}{5}$  

(d) $ {\bf F} = (x,y,z)$より $ {\rm div}{\bf F} = 3$.よって

$\displaystyle \iint_{S}xdydz+ ydzdx+ zdxdy = \iiint_{V}3dV$

ここで,$ S$は円柱 $ x^2 +y^2 = 9$と平面 $ z = 0, z= 3$で囲まれた領域なので,その体積は $ \pi r^2 h = 27 \pi$.これより

$\displaystyle \iint_{S}xdydz+ ydzdx+ zdxdy = \iiint_{V}3dV = 81\pi$

3. $ A$を閉曲線$ C$で囲まれた領域とすると,Greenの定理で $ P = -y, Q = x$とおくと

$\displaystyle \oint_{C}xdy - ydx = \iint_{\Omega}\left(\frac{\partial x}{\partial x} - \frac{\partial (-y)}{\partial y}\right)dx dy = \iint_{\Omega}2 dx dy = 2A$

よって, $ A = \frac{1}{2}\oint_{C}xdy - ydx$

4.

$\displaystyle A$ $\displaystyle =$ $\displaystyle \frac{1}{2}\oint_{C}xdy - y dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\int_{0}^{2\pi}(a\cos{\theta})(b\cos{\theta}d\theta - (b\sin{\theta})(-a\sin{\theta})d\theta$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\int_{0}^{2\pi}ab(\cos^{2}{\theta} + \sin^{2}{\theta})d\theta$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\int_{0}^{2\pi}ab d\theta = \pi ab$  

5. labelenshU:8-6-5 発散定理において $ {\bf F} = f {\rm grad}g$とおくと

$\displaystyle {\bf } \cdot {\hat{\bf n}} = f ({\rm grad}g \cdot {\hat{\bf n}} = f\frac{\partial g}{\partial n}$

また,
$\displaystyle {\rm div}{\bf F}$ $\displaystyle =$ $\displaystyle {\rm div}(f {\rm grad}g)$  
  $\displaystyle =$ $\displaystyle \nabla \cdot (f \nabla g) = (\nabla f)\cdot \nabla g + f\nabla \cdot \nabla g$  
  $\displaystyle =$ $\displaystyle {\rm grad}f \cdot {\rm grad}g + f \nabla^2 g$  

よって

$\displaystyle \iint_{S}f \frac{\partial g}{\partial n} dS = \iiint_{V}(f \nabla^2 g + {\rm grad}f \cdot {\rm grad}g)dV$