2.4 関数の性質

1.

(a) $\displaystyle{\xi = \frac{3}{2}}$ (b) $\displaystyle{\xi = \sqrt{\frac{13}{3}}}$ (c) $\displaystyle{\xi = \frac{1}{\sqrt{2}}}$

2.

(a) $(-\infty, 0)$で上に凸, $(0,\infty)$で下に凸, $x = -1$で極大値$4$$x = 1$で極小値0, 変曲点$(0,2)$

(b) $(-\infty, 0)$で上に凸, $(0,\infty)$で下に凸, $x = -1$で極大値$-2$$x = 1$で極小値$2$

=2.6zw =1(c) 上に凸 $(-\infty, -1)$,下に凸 $(-1, \infty)$, $\displaystyle{x = -1 -\frac{\sqrt{3}}{3}}$で極大値 $\displaystyle{\frac{2\sqrt{3}}{9}}$ $\displaystyle{x = -1 + \frac{\sqrt{3}}{3}}$で極小値 $\displaystyle{-\frac{2\sqrt{3}}{9}}$, 変曲点$(-1,0)$

=2.6zw =1(d) 上に凸 $(-\infty, -\sqrt{3}), (0, \sqrt{3})$,下に凸 $(-\sqrt{3}, 0), (\sqrt{3},\infty)$, $x = -1$で極小値 $\displaystyle{-\frac{1}{2}}$$x = 1$で極大値 $\displaystyle{\frac{1}{2}}$, 変曲点 $\displaystyle{(-\sqrt{3}, -\frac{\sqrt{3}}{4}), (0,0), (\sqrt{3}, \frac{\sqrt{3}}{4})}$

=2.6zw =1(e) 上に凸$(-2,1)$,下に凸 $(-\infty,-2), (1,\infty)$, $x = -2$$x = 1$で極小値0 $x = -\frac{1}{2}$で極大値 $\frac{9}{4}$

3.

(a) $400$ (b) $\displaystyle{\frac{32\sqrt{3}}{9}}$ =2.6zw =1(c) $\displaystyle{\frac{64\sqrt{2}}{3}}$ (d) $\displaystyle{\frac{1}{2}}$