2.4 関数の性質

1.

(a) $ \displaystyle{\xi = \frac{3}{2}}$ (b) $ \displaystyle{\xi = \sqrt{\frac{13}{3}}}$ (c) $ \displaystyle{\xi = \frac{1}{\sqrt{2}}}$

2.

(a) $ (-\infty, 0)$で上に凸, $ (0,\infty)$で下に凸, $ x = -1$で極大値$ 4$$ x = 1$で極小値0, 変曲点$ (0,2)$

(b) $ (-\infty, 0)$で上に凸, $ (0,\infty)$で下に凸, $ x = -1$で極大値$ -2$$ x = 1$で極小値$ 2$

=2.6zw =1(c) 上に凸 $ (-\infty, -1)$,下に凸 $ (-1, \infty)$, $ \displaystyle{x = -1 -\frac{\sqrt{3}}{3}}$で極大値 $ \displaystyle{\frac{2\sqrt{3}}{9}}$ $ \displaystyle{x = -1 + \frac{\sqrt{3}}{3}}$で極小値 $ \displaystyle{-\frac{2\sqrt{3}}{9}}$, 変曲点$ (-1,0)$

=2.6zw =1(d) 上に凸 $ (-\infty, -\sqrt{3}), (0, \sqrt{3})$,下に凸 $ (-\sqrt{3}, 0), (\sqrt{3},\infty)$, $ x = -1$で極小値 $ \displaystyle{-\frac{1}{2}}$$ x = 1$で極大値 $ \displaystyle{\frac{1}{2}}$, 変曲点 $ \displaystyle{(-\sqrt{3}, -\frac{\sqrt{3}}{4}), (0,0), (\sqrt{3}, \frac{\sqrt{3}}{4})}$

=2.6zw =1(e) 上に凸$ (-2,1)$,下に凸 $ (-\infty,-2), (1,\infty)$, $ x = -2$$ x = 1$で極小値0 $ x = -\frac{1}{2}$で極大値 $ \frac{9}{4}$

3.

(a) $ 400$ (b) $ \displaystyle{\frac{32\sqrt{3}}{9}}$ =2.6zw =1(c) $ \displaystyle{\frac{64\sqrt{2}}{3}}$ (d) $ \displaystyle{\frac{1}{2}}$