1.1 関数(FUNCTIONS)

1.

(a) 2価関数 (b) 1価関数

2.

(a) $ D(f) = [-2,2]$ (b) $ \displaystyle{D(h) = (-\infty,-\frac{1}{2}) \cup (0, \frac{4}{3}]}$

3.

(a) $ \displaystyle{(f \circ g)(x) = 2x^2 + 1,  (g \circ f)(x) = 4x^2 - 4x + 2}$

(b) $ \displaystyle{(f \circ g)(x) = \left\{\begin{array}{cl}
x^2 & x < 0\\
1 + x &...
...2 - x & x \leq 0\\
- x^2 & 0 < x < 1\\
1 + x^2 & x \geq 1
\end{array}\right.}$

4.

(a) $ \displaystyle{y = \frac{1}{x} - 2}$ (b) $ \displaystyle{y = -2 + \sqrt{x + 6}  (x \geq -6)  y = -2 - \sqrt{x + 6}  (x \geq -6)}$

5.

(a) 偶関数 (b) 奇関数

6.

(a) 偶関数と偶関数の積は偶関数,偶関数と奇関数の積は奇関数

(b) 偶関数は$ y$軸対称.奇関数は原点対称.