6.4 全微分

1.

(a) $ \displaystyle{\nabla f = (3x^{2},2y), df = 3x^{2}dx + 2y dy}$

(b) $ \displaystyle{\nabla f = (6x-y,-x+1), df = (6x-y)dx -(x-1)dy}$

(c) $ \displaystyle{\nabla z = (2xy^{-2}, -2x^{2}y^{-3}), dz = 2xy^{-2}dx - 2x^{2}y^{-3}dy}$

(d) $ \displaystyle{\nabla z = (2xy, x^{2}), dz = 2xydx + x^{2}dy}$

(e) $ \displaystyle{\nabla z = (e^{x}\cos{y}, -e^{x}\sin{y}), dz = e^{x}\cos{y}dx - e^{x}\sin{y}dy}$

2.

(a) $ \displaystyle{3x + 2y - z = 4, (x,y,z) = (1,1,1) + (3,2,-1)t}$

(b) $ \displaystyle{x + 2y - z = 3, (x,y,z) = (2,1,1) + (1,2,-1)t}$ 

(c) $ \displaystyle{3x + 5y - z = 4, (x,y,z) = (1,1,4) + (3,5,-1)t}$