演習問題解答

演習問題詳解3.2

1.

(1) $ \phi = x^2 z + e^{y/x}$より,

$\displaystyle \nabla \phi = \frac{\partial \phi}{\partial x}\boldsymbol{i} + \f...
...x^2}))\boldsymbol{i} + (e^{y/x}(\frac{1}{x}))\boldsymbol{j} + x^2\boldsymbol{k}$

$ \psi = 2z^2 y - xy^2$より,

$\displaystyle \nabla \psi = \frac{\partial \psi}{\partial x}\boldsymbol{i} + \f...
...symbol{k} = -y^2\boldsymbol{i} + (2z^2 - 2xy)\boldsymbol{j} + 4zy\boldsymbol{k}$

(2) $ \nabla (\phi \psi) = (\nabla \phi)\psi + \phi \nabla \psi$. (1)より,

$\displaystyle \nabla (\phi \psi)$ $\displaystyle =$ $\displaystyle ((2xz + e^{y/x}(-\frac{y}{x^2}))\boldsymbol{i} + (e^{y/x}(\frac{1}{x}))\boldsymbol{j} + x^2\boldsymbol{k})(2z^2 y - xy^2)$  
  $\displaystyle +$ $\displaystyle (x^2 z + e^{y/x})(-y^2\boldsymbol{i} + (2z^2 - 2xy)\boldsymbol{j} + 4zy\boldsymbol{k})$  

より,点P$ (1,0,-2)$での値は

$\displaystyle \nabla (\phi \psi)_{P} = (-4\boldsymbol{i} + \boldsymbol{j} + \boldsymbol{k})(0) + (-2+1)(8)\boldsymbol{j} = -8\boldsymbol{j}$

2. $ \phi$の点P$ (2,-1,2)$における$ {\bf u}$方向への方向微分係数は,

$\displaystyle \frac{\partial \phi(2,-1,2)}{\partial u} = \nabla \phi(1,0,-2) \cdot {\bf u}$

ここで,
$\displaystyle \nabla \phi(2,-1,2)$ $\displaystyle =$ $\displaystyle (4z^3 - 6xyz)\boldsymbol{i} + (-3x^2 z)\boldsymbol{j} + (12xz^2 - 3x^2y)\boldsymbol{k}\mid_{(2,-1,2)}$  
  $\displaystyle =$ $\displaystyle (32 + 24)\boldsymbol{i} + (-24)\boldsymbol{j} +(96 + 12))\boldsymbol{k}$  

より,

$\displaystyle \frac{\partial \phi(2,-1,2)}{\partial u} = (56\boldsymbol{i} - 24...
...ldsymbol{j} + 6\boldsymbol{k}}{7} = \frac{1}{7}(112 + 72 + 648) = \frac{832}{7}$

3. $\nabla r^{n} = nr^{n-1}\nabla r = nr^{n-1}\frac{\boldsymbol{r}}{r} = nr^{n-2}\boldsymbol{r}$を用いると簡単である.

(1)

$\displaystyle {\bf A} = \nabla \left(2r^2 - 4\sqrt{r} + \frac{6}{3\sqrt{r}}\rig...
...oldsymbol{r}) = (4 - \frac{2}{r\sqrt{r}} - \frac{1}{r^2\sqrt{r}})\boldsymbol{r}$

(2)

$\displaystyle {\bf B} = \nabla (r^2 e^{-r}) = (\nabla r^{2})e^{-r} + r^{2} (\na...
...boldsymbol{r} -r^2 e^{-r}\frac{\boldsymbol{r}}{r} = (2 - r)e^{-r}\boldsymbol{r}$

別解 $\nabla f(\phi) = \frac{d f}{d\phi} \nabla \phi$を用いると,

$\displaystyle {\bf B} = \nabla (r^2 e^{-r}) = \frac{d (r^2 e^{-r})}{dr} \nabla r = (2re^{-r} -r^2 e^{-r})\frac{\boldsymbol{r}}{r} = (2 - r)e^{-r}\boldsymbol{r}$

4. $ \phi(x,y,z) = x^2 y + 2xz $の勾配 $ \nabla \phi$は点Pでこの曲面 $ \phi(x,y,z) = 4$に垂直である.したがって, 単位法ベクトル $\boldsymbol{n}$

$\displaystyle \boldsymbol{n} = \frac{(\nabla \phi)_{P}}{\vert\nabla \phi\vert _{P}}$

ここで, $(\nabla \phi)_{P} = (2xy +2z)\boldsymbol{i} + x^2 \boldsymbol{j} + 2x\boldsymbol{k})\mid_{(2,-2,3)} = -2\boldsymbol{i} + 4\boldsymbol{j} + 4\boldsymbol{k}$より,

$\displaystyle \boldsymbol{n} = \frac{-2\boldsymbol{i} + 4\boldsymbol{j} + 4\bol...
... + 16 + 16}} = \frac{1}{3}(-\boldsymbol{i} + 2\boldsymbol{j} + 2\boldsymbol{k})$

5. $\nabla = \boldsymbol{i}\frac{\partial}{\partial x} + \boldsymbol{j}\frac{\partial}{\partial y} + \boldsymbol{k}\frac{\partial }{\partial z}$より,

$\displaystyle \boldsymbol{i}\frac{\partial}{\partial x} (\frac{\phi}{\psi})$ $\displaystyle =$ $\displaystyle \boldsymbol{i}\frac{\phi_{x}\psi - \phi \psi_{x}}{\psi^2} = \frac{\psi \phi_{x}\boldsymbol{i} - \phi \psi_{x}\boldsymbol{i}}{\psi^2}$  
$\displaystyle \boldsymbol{j}\frac{\partial}{\partial y} (\frac{\phi}{\psi})$ $\displaystyle =$ $\displaystyle \boldsymbol{j}\frac{\phi_{y}\psi - \phi \psi_{y}}{\psi^2} = \frac{\psi \phi_{y}\boldsymbol{j} - \phi \psi_{y}\boldsymbol{j}}{\psi^2}$  
$\displaystyle \boldsymbol{k}\frac{\partial}{\partial z} (\frac{\phi}{\psi})$ $\displaystyle =$ $\displaystyle \boldsymbol{k}\frac{\phi_{z}\psi - \phi \psi_{z}}{\psi^2} = \frac{\psi \phi_{z}\boldsymbol{k} - \phi \psi_{z}\boldsymbol{k}}{\psi^2}$  

ここで, $\phi_{x}\boldsymbol{i} + \phi_{y}\boldsymbol{j} + \phi_{z}\boldsymbol{k} = \nabla \phi$, $\psi_{x}\boldsymbol{i} + \psi_{y}\boldsymbol{j} + \psi_{z}\boldsymbol{k} = \nabla \psi$であるから,

$\displaystyle \nabla \left(\frac{\phi}{\psi}\right) = \frac{\phi \nabla \psi - \psi \nabla \phi}{\phi^2}$

6.

(1) $ r = \sqrt{(\xi -x)^2 + (\eta - y)^2 + (\zeta - z)^2}$ $\nabla_{Q} = \boldsymbol{i}\frac{\partial}{\partial \xi} + \boldsymbol{j}\frac{\partial}{\partial \eta} + \boldsymbol{k}\frac{\partial}{\partial \zeta}$, $\nabla_{P} = \boldsymbol{i}\frac{\partial}{\partial x} + \boldsymbol{j}\frac{\partial}{\partial y} + \boldsymbol{k}\frac{\partial}{\partial z}$とすると,

$\displaystyle \nabla_{Q}r$ $\displaystyle =$ $\displaystyle \boldsymbol{i}\frac{\partial r}{\partial \xi} + \boldsymbol{j}\frac{\partial r}{\partial \eta} + \boldsymbol{k}\frac{\partial r}{\partial \zeta}$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i}\frac{2(\xi-x)}{2r} + \boldsymbol{j}\frac{2(\eta -y)}{2r} + \boldsymbol{k}\frac{2(\zeta - z)}{2r}$  
$\displaystyle \nabla_{P}r$ $\displaystyle =$ $\displaystyle \boldsymbol{i}\frac{\partial r}{\partial x} + \boldsymbol{j}\frac{\partial r}{\partial y} + \boldsymbol{k}\frac{\partial r}{\partial z}$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i}\frac{-2(\xi-x)}{2r} + \boldsymbol{j}\frac{-2(\eta -y)}{2r} + \boldsymbol{k}\frac{-2(\zeta - z)}{2r} = -\nabla_{Q}r$  

(2)

$\displaystyle \nabla_{Q}(\frac{1}{r})$ $\displaystyle =$ $\displaystyle \boldsymbol{i}\frac{\partial r^{-1}}{\partial \xi} + \boldsymbol{...
...l r^{-1}}{\partial \eta} + \boldsymbol{k}\frac{\partial r^{-1}}{\partial \zeta}$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i}(-r^{-2}\frac{(\xi-x)}{r}) + \boldsymbol{j}(-r^{-2}\frac{(\eta-y)}{r}) + \boldsymbol{k}(-r^{-2}\frac{(\zeta-z)}{r})$  
$\displaystyle \nabla_{P}(\frac{1}{r})$ $\displaystyle =$ $\displaystyle \boldsymbol{i}\frac{\partial r^{-1}}{\partial x} + \boldsymbol{j}...
...\partial r^{-1}}{\partial y} + \boldsymbol{k}\frac{\partial r^{-1}}{\partial z}$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i}(r^{-2}\frac{(\xi-x)}{r}) + \boldsymbol{j}(r^{-2}\f...
...-y)}{r}) + \boldsymbol{k}(r^{-2}\frac{(\zeta-z)}{r}) = -\nabla_{Q}(\frac{1}{r})$  

演習問題詳解3.3 1. $\boldsymbol{r} = x\boldsymbol{i} + \boldsymbol{j} + \boldsymbol{k} = (t^2 + 1)\boldsymbol{i} + 2t^2\boldsymbol{j} + t^3 \boldsymbol{k}$より,

$\displaystyle d\boldsymbol{r} = ( 2t\boldsymbol{i} + 4t\boldsymbol{j} + 3t^2 \boldsymbol{k})dt$

また, ${\mathbf F} = 3xy\boldsymbol{i} - 5z\boldsymbol{j} + 10x \boldsymbol{k} = 3(t^2+1)(2t^2)\boldsymbol{i} - 5(t^3)\boldsymbol{j} + 10(t^2 + 1)\boldsymbol{k}$. したがって,
$\displaystyle W$ $\displaystyle =$ $\displaystyle \int_{C}{\mathbf F}\cdot d\boldsymbol{r} = \int_{1}^{2}\left(12t^3(t^2+1) - 20t^4 + 30(t^2+1)t^2\right)dt$  
  $\displaystyle =$ $\displaystyle \int_{1}^{2} (12t^5 + 10t^4 + 12t^3 + 30t^2 )dt = \left[2t^6 + 2t^5 + 3t^4 + 10t^3\right]_{1}^{2}$  
  $\displaystyle =$ $\displaystyle 2(64 -1) + 2(32 - 1) + 3(16-1) + 10(8-1) = 303$  

2.

(1) $\boldsymbol{r} = x\boldsymbol{i} + \boldsymbol{j} + \boldsymbol{k} = t^2\boldsymbol{i} + 2t\boldsymbol{j} + t^3\boldsymbol{k} (0 \leq t \leq 1)$より,

$\displaystyle d\boldsymbol{r} = 2t\boldsymbol{i} + 2\boldsymbol{j} + 3t^2\boldsymbol{k}$

また, $ \phi = 2xyz^2 = 2t^2(2t)(t^3)^2 = 4t^9$.したがって,
$\displaystyle \int_{C}\phi d\boldsymbol{r}$ $\displaystyle =$ $\displaystyle \int_{0}^{1}4t^{9} (2t\boldsymbol{i} + 2\boldsymbol{j} + 3t^2\boldsymbol{k})dt$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(8t^{10}\boldsymbol{i} + 8t^{9}\boldsymbol{j} + 12t^{...
...bol{i} + \frac{8}{10}t^{10}\boldsymbol{j} + t^{12}\boldsymbol{k}\right]_{0}^{1}$  
  $\displaystyle =$ $\displaystyle \frac{8}{11}\boldsymbol{i} + \frac{4}{5}\boldsymbol{j} + \boldsymbol{k}$  

(2) $\boldsymbol{r} = x\boldsymbol{i} + \boldsymbol{j} + \boldsymbol{k} = t^2\boldsymbol{i} + 2t\boldsymbol{j} + t^3\boldsymbol{k} (0 \leq t \leq 1)$より,

$\displaystyle d\boldsymbol{r} = 2t\boldsymbol{i} + 2\boldsymbol{j} + 3t^2\boldsymbol{k}$

また, ${\mathbf F} = xy\boldsymbol{i} - z\boldsymbol{j} + x^2 \boldsymbol{k} = 2t^3\boldsymbol{i} - t^3\boldsymbol{j} + t^4\boldsymbol{k}$.したがって,
$\displaystyle \int_{C}{\mathbf F} \times d\boldsymbol{r}$ $\displaystyle =$ $\displaystyle \int_{0}^{1}\left\vert\begin{array}{ccc}
\boldsymbol{i} & \boldsy...
...dsymbol{i} - (6t^5 - 2t^5)\boldsymbol{j} + (4t^3 + 2t^4)\boldsymbol{k}\right)dt$  
  $\displaystyle =$ $\displaystyle \left[(-\frac{t^6}{2} - \frac{2t^5}{5})\boldsymbol{i} - \frac{4t^6}{6}\boldsymbol{j} + (t^4 + \frac{2t^5}{5})\boldsymbol{k}\right]_{0}^{1}$  
  $\displaystyle =$ $\displaystyle (-\frac{1}{2} - \frac{2}{5})\boldsymbol{i} - \frac{2}{3}\boldsymb...
...ac{9}{10}\boldsymbol{i} - \frac{2}{3}\boldsymbol{j} + \frac{7}{5}\boldsymbol{k}$  

3. ベクトル場$ {\bf A}$ $ {\bf A} = -\nabla \phi$のとき,がスカラー・ポテンシャルを持つといい,そのとき, $\int_{C}{\bf A}\cdot d\boldsymbol{r} = 0$である. そこで, $\boldsymbol{r} = \nabla \phi$であるような$ \phi$を求める.

$\displaystyle \nabla (\boldsymbol{r} \cdot\boldsymbol{r}) = \nabla r^2 = 2 \boldsymbol{r}$

より, $\boldsymbol{r} = \frac{1}{2} \nabla (\boldsymbol{r} \cdot\boldsymbol{r}) $.したがって,

$\displaystyle \int_{C}\boldsymbol{r}\cdot d\boldsymbol{r} = \frac{1}{2}\int_{C}\nabla (\boldsymbol{r} \cdot\boldsymbol{r})d\boldsymbol{r} = 0$

4. 力の場 $ {\mathbf F}$がポテンシャル$ U$をもつことより, $ {\mathbf F} = -\nabla U$.これより,この質点の運動方程式は

$\displaystyle m \frac{d{\bf v}}{dt} = {\mathbf F} = -\nabla U$

また, ${\bf v} = \frac{d\boldsymbol{r}}{dt}$.そこで,

$\displaystyle m \frac{d^2{\bf v}}{dt^2} \cdot{\bf v} = -\nabla U \cdot\frac{d\boldsymbol{r}}{dt}$

これより,

$\displaystyle m{\bf v}\cdot\frac{d{\bf v}}{dt} + \frac{d\boldsymbol{r}}{dt} \cdot\nabla U = 0$

ここで, $\frac{d\boldsymbol{r}}{dt} \cdot\nabla U$を計算すると,

$\displaystyle \frac{d\boldsymbol{r}}{dt} \cdot\nabla U = (\frac{dx}{dt}\boldsym...
...al y}\frac{dy}{dt} + \frac{\partial U}{\partial z}\frac{dz}{dt} = \frac{dU}{dt}$

よって,

$\displaystyle m{\bf v}\cdot \frac{d{\bf v}}{dt} + \frac{dU}{dt} = \frac{d}{dt}(\frac{1}{2}m{\bf v}\cdot {\bf v} + U)= 0$

これより,

$\displaystyle \frac{1}{2}mv^2 + U = C  (C 定数)$

したがって,

$\displaystyle \frac{1}{2}mv_{A}^2 + U(A) = \frac{1}{2}mv_{B}^2 + U(B)$

5. $ xy$平面上で原点Oを中心とし,半径$ a$の円を$ C$とすると, $ C : x = a\cos{t}, y = a\sin{t},  0 \leq t \leq 2\pi$とパラメター化できる.これより,

$\displaystyle \nabla \phi = \frac{-\frac{y}{x^2}}{1 + (\frac{y}{x})^2}\boldsymb...
...dsymbol{j} = \frac{-\sin{t}}{a}\boldsymbol{i} + \frac{\cos{t}}{a}\boldsymbol{j}$

また,

$\displaystyle d\boldsymbol{r} = (-a\sin{t}\boldsymbol{i} + a\cos{t}\boldsymbol{j})dt$

したがって,

$\displaystyle \int_{C}(\nabla \phi) \cdot d\boldsymbol{r} = \int_{0}^{2\pi}(-\s...
...} +\cos{t}\boldsymbol{j})\cdot(-\sin{t} + \cos{t})dt = \int_{0}^{2\pi}dt = 2\pi$

演習問題詳解3.4

1.

(1) 曲面$ S$$ xy$平面に正射影すると,$ S$ $ \Omega = \{(x,y): 2x + 2y \leq 2, x \geq 0, y \geq 0\}$に移る.また,曲面 $ S : 2x + 2y + z = 2$より,対応する $\boldsymbol{r}$を位置ベクトルとすると,

$\displaystyle \boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + (2-2x-2y)\boldsymbol{k}$

これより,曲面$ S$の法線ベクトル $\boldsymbol{r}_{x} \times \boldsymbol{r}_{y}$を求めると,

$\displaystyle \boldsymbol{r}_{x} \times \boldsymbol{r}_{y} = \left\vert\begin{a...
... -2
\end{array}\right\vert = 2\boldsymbol{i} + 2\boldsymbol{j} + \boldsymbol{k}$

ここで, $dS = \vert\boldsymbol{r}_{x} \times \boldsymbol{r}_{y}\vert dx dy = \sqrt{4 + 4 + 1}dxdy = 3dxdy$に注意すると,


$\displaystyle \int_{S}fdS$ $\displaystyle =$ $\displaystyle 3\int_{\Omega}(x^2 + 2y + z - 1)dxdy = 3\int_{0}^{1}\int_{y=0}^{1-x}(x^2 + 2y + (2-2x-2y) -1)dydx$  
  $\displaystyle =$ $\displaystyle 3\int_{0}^{1}\int_{0}^{1-x}(x^2 - 2x + 1)dydx = 3\int_{0}^{1}\int_{0}^{1-x}(x-1)^2\;dydx$  
  $\displaystyle =$ $\displaystyle 3\int_{0}^{1}\left[(x-1)^2y\right]_{0}^{1-x}dx = 3\int_{0}^{1}(1-x)^3\;dx = -3\left[\frac{1}{4}(1-x)^{4}\right]_{0}^{1} = \frac{3}{4}$  

(2) $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + (2-2x-2y)\boldsymbol{k}$とすると, $\boldsymbol{n} = \frac{\boldsymbol{r}_{x} \times \boldsymbol{r}_{y}}{\vert\bold...
...bol{r}_{y}\vert} = \frac{2\boldsymbol{i} + 2\boldsymbol{j} + \boldsymbol{k}}{3}$. よって,

$\displaystyle {\bf A} \cdot\boldsymbol{n} = (x^2 \boldsymbol{i} + z\boldsymbol{...
...rac{2\boldsymbol{i} + 2\boldsymbol{j} + \boldsymbol{k}}{3} = \frac{2x^2 + z}{3}$

したがって,
$\displaystyle \int_{S}{\bf A} \cdot\boldsymbol{n}dS$ $\displaystyle =$ $\displaystyle \int_{\Omega}\frac{2x^2 + z}{3}3dxdy = \int_{\Omega}(2x^2 + (2-2x-2y))dxdy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}\int_{0}^{1-x}(2x^2 - 2x - 2y + 2)dy dx = \int_{0}^{1}\left[2x^2 y - 2xy -y^2 + 2y\right]_{0}^{1-x}dx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(2x^2(1-x) - 2x(1-x) - (1-x)^2 + 2(1-x))dx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(1-x)(2x^2 - 2x - (1-x) + 2)dx = \int_{0}^{1}(1-x)(2x^2 - x + 1)dx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(-2x^3 +3x^2 - 2x + 1)dx = \left[-\frac{x^4}{2} + x^3 - x^2 + x\right]_{0}^{1}$  
  $\displaystyle =$ $\displaystyle -\frac{1}{2} + 1 - 1 + 1 = \frac{1}{2}$  

2. 曲面$ S$$ xy$平面上領域より,法線単位ベクトルは $\boldsymbol{n} = \boldsymbol{k}$となる.

$\displaystyle {\bf A} \times \boldsymbol{n} = (x\boldsymbol{i} + (x-y)\boldsymb...
...{xy}\\
0 & 0& 1
\end{array}\right\vert = (x-y)\boldsymbol{i} - x\boldsymbol{j}$

また,$ S$$ xy$平面上にあるので, $ S = \Omega$$ dS = dxdy$.ここで,$ \Omega$は円板より,極座標を用いると, $ x = r\cos{\theta}, y = r\sin{\theta}, 0 \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq a$となり,
$\displaystyle \int_{S}{\bf A} \times \boldsymbol{n}dS$ $\displaystyle =$ $\displaystyle \int_{0}^{\pi/2}\int_{0}^{a}((r\cos{\theta} - r\sin{\theta})\boldsymbol{i} - r\cos{\theta}\boldsymbol{j})rdr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\pi/2}\left[\frac{r^3}{3}\right]_{0}^{a}\left((\cos{\theta} - \sin{\theta})\boldsymbol{i} - \cos{\theta}\boldsymbol{j}\right)d\theta$  
  $\displaystyle =$ $\displaystyle \frac{a^3}{3}\left[(\sin{\theta} + \cos{\theta}\boldsymbol{i} - \...
...3}{3}((1-1)\boldsymbol{i} - \boldsymbol{j}) = -\frac{a^3}{3}\boldsymbol{j}
F3-4$  

3. 曲面$ S$$ xy$平面に正射影すると$ S$ $\Omega = \{(x,y):y^2 = 4, 0 \leq x \leq 3, y \geq 0\}$. 次に,$ {\bf r}$を位置ベクトルとすると ${\bf r} =x{\bf i} + y{\bf j} + \sqrt{4-y^2}{\bf k}$. これより,曲面$ S$の法線ベクトル ${\bf r}_{x} \times {\bf r}_{y} = \frac{y}{\sqrt{4-y^2}}{\bf j} +{\bf k}$. これより,

$\displaystyle \iint_{S}(3x{\bf i} + 4z{\bf j} +2y{\bf k}) \cdot {\bf n} dS = \i...
...bf j} +2y{\bf k})\cdot ({\bf r}_{x} \times {\bf r}_{y})dxdy = \iint_{S}(6y)dxdy$

ここで,$ \Omega$を縦線重合で表すと,

$\displaystyle \iint_{S}(6y)dxdy = \int_{0}^{3}\int_{0}^{2}6y dy dx = \int_{0}^{3}3y^2\mid_{0}^{2} = \int_{0}^{3}12dx = 36$

4. 曲面$ S$$ yz$平面に正射影すると$ S$ $\Omega = \{(y,z):y^2 = a^2, 0 \leq z \leq 1\}$. 次に,$ {\bf r}$を位置ベクトルとすると ${\bf r} =x{\bf i} + \sqrt{a^2 -x^2}{\bf j} + z{\bf k}$. これより,曲面$ S$の法線ベクトル ${\bf r}_{z} \times {\bf r}_{x} = \frac{y}{\sqrt{4-y^2}}{\bf i} +{\bf k}$.よって,

$\displaystyle {\bf n}$ $\displaystyle =$ $\displaystyle \frac{{\bf r}_{z} \times {\bf r}_{x}}{\vert{\bf r}_{z} \times {\b...
...} = \frac{\frac{y}{\sqrt{4-y^2}}{\bf i} +{\bf k}}{\sqrt{\frac{y^2}{4-y^2} + 1}}$  
  $\displaystyle =$ $\displaystyle \frac{\frac{y}{\sqrt{4-y^2}}{\bf i} +{\bf k}}{\sqrt{\frac{4}{4-y^2}}}$  

これより,

$\displaystyle \iint_{S}(3x{\bf i} + 4z{\bf j} +2y{\bf k}) \cdot {\bf n} dS = \iint_{S}{\bf r}_{x} \times {\bf r}_{y}dxdy = \iint_{S}(6y)dxdy$

ここで,$ \Omega$を縦線重合で表すと,

$\displaystyle \iint_{S}(6y)dxdy = \int_{0}^{3}\int_{0}^{2}6y dy dx = \int_{0}^{3}3y^2\mid_{0}^{2} = \int_{0}^{3}12dx = 36$

演習問題詳解3.5 基本公式 $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}, r = \sqrt{x^2 + y^2 + z^2}$とすると,(1) $\nabla r = \frac{\boldsymbol{r}}{r} (2) \nabla r^{n} = nr^{n-1}\nabla r = nr^...
...dsymbol{A}= (\nabla \phi) \cdot\boldsymbol{A} + \phi \nabla \cdot\boldsymbol{A}$

1.

(1)

$\displaystyle \nabla \cdot(2x^2 z\boldsymbol{i} - xy^2 z \boldsymbol{j} + 3yz^2...
...ial (-xy^2)}{\partial y} + \frac{\partial (3yz^2)}{\partial z} = 4xz -2xy + 6yz$

(2)

$\displaystyle \nabla^2(3x^2 z - y^2 z^3 + 4x^2 y)$ $\displaystyle =$ $\displaystyle \frac{\partial^2 (3x^2 z - y^2 z^3 + 4x^2 y)}{\partial x^2} + \fr...
...2 y)}{\partial y^2} + \frac{\partial (3x^2 z - y^2 z^3 + 4x^2 y)}{\partial z^2}$  
  $\displaystyle =$ $\displaystyle 6z + 8y - 2z^3 -6y^2 z$  

(3)

$\displaystyle \nabla(\nabla \cdot\boldsymbol{F}) = \nabla (6xy + 4y^3 -4x^2z) = (6y-8xz)\boldsymbol{i} + (6x+12y^2)\boldsymbol{j} - 4x^2\boldsymbol{k}$

2.

(1) $\nabla r^{-3} = \frac{d r^{-3}}{dr}\nabla r = -3r^{-4}\frac{\boldsymbol{r}}{r} = -3r^{-5}\boldsymbol{r}$より, $r\nabla r^{-3} = -3r^{-4}\boldsymbol{r}$. したがって,

$\displaystyle \nabla \cdot(r \nabla r^{-3}) = \nabla \cdot(-3r^{-4}\boldsymbol{...
...oldsymbol{r}}{r} \cdot\boldsymbol{r} -3r^{-4}(3) = 12r^{-4} - 9r^{-4} = 3r^{-4}$

(2) $\nabla\cdot\left(\frac{\boldsymbol{r}}{r^2}\right) = \nabla \cdot r^{-2}\boldsy...
...boldsymbol{r}}{r} \cdot\boldsymbol{r} + r^{-2}(3) = -2r^{-2} + 3r^{-2} = r^{-2}$. したがって,

$\displaystyle \nabla^{2}\left\{\nabla\cdot\left(\frac{\boldsymbol{r}}{r^2}\right)\right\}$ $\displaystyle =$ $\displaystyle \nabla \cdot(\nabla(r^{-2})) = \nabla \cdot(-2r^{-3}\frac{\boldsymbol{r}}{r} = \nabla \cdot(-2r^{-4}\boldsymbol{r}$  
  $\displaystyle =$ $\displaystyle \nabla(-2r^{-4}) \cdot\boldsymbol{r} + -2r^{-4} \nabla \cdot\bold...
...oldsymbol{r}}{r} \cdot\boldsymbol{r} - 2r^{-4}(3) = 8r^{-4} - 6r^{-4} = 2r^{-4}$  

3. ${\bf w} = w_{1}\boldsymbol{i} + w_{2}\boldsymbol{j} + w_{3}\boldsymbol{k}$ とすると,

$\displaystyle {\bf w} \times \boldsymbol{r} = \left\vert\begin{array}{ccc}
\bol...
...ldsymbol{i} + (w_{3}x - w_{1}z)\boldsymbol{j} + (w_{1}y - w_{2}x)\boldsymbol{k}$

したがって,

$\displaystyle \nabla \cdot({\bf w} \times \boldsymbol{r}) = 0$

4.

(1) 基本公式より,

$\displaystyle \nabla^2(\phi \psi)$ $\displaystyle =$ $\displaystyle \nabla \cdot \nabla(\phi \psi) = \nabla \cdot ((\nabla \phi)\psi ...
...nabla \psi) + (\nabla \phi)\cdot (\nabla\psi) + \phi \nabla \cdot (\nabla \psi)$  
  $\displaystyle =$ $\displaystyle \psi + (\nabla^2 \phi) + 2(\nabla \phi)\cdot (\nabla \psi) + \phi \nabla^2 \psi$  

(1) 基本公式より,

$\displaystyle \nabla \cdot (\phi \nabla \psi) = (\nabla \phi) \cdot (\nabla \ps...
...la \cdot (\nabla \psi) = (\nabla \phi) \cdot (\nabla \psi) + \phi \nabla^2 \psi$      

(3) (2)より, $ \nabla \cdot (\phi \nabla \psi) = (\nabla \phi) \cdot (\nabla \psi) + \phi \nabla^2 \psi$. 対称性より, $ \nabla \cdot (\psi \nabla \phi) = (\nabla \psi) \cdot (\nabla \phi) + \psi \nabla^2 \phi$. したがって,

$\displaystyle \nabla \cdot (\phi \nabla \psi - \psi \nabla \phi) = \phi \nabla^2 \psi - \psi \nabla^2 \phi$      

5. $\nabla \phi = \frac{\partial \phi}{\partial x}\boldsymbol{i} + \frac{\partial \...
...l z} = 2xyz^3\boldsymbol{i} + x^2 z^3 \boldsymbol{j} + 3x^2 y z^2\boldsymbol{k}$より

$\displaystyle \frac{\partial \phi}{\partial x} = 2xyz^3, \frac{\partial \phi}{\partial y} = x^2 z^3, \frac{\partial \phi}{\partial z} = 3x^2 yz^2$

これより, $ \phi(x,y,z) = x^2 yz^3 + c(y,z)$.ここで, $ \frac{\partial \phi}{\partial y} = x^2 z^3$を用いると, $ \frac{\partial c(y,z)}{\partial y} = 0$より, $ c(y,z) = c(z)$.最後に, $ \frac{\partial \phi}{\partial z} = 3x^2 yz^2$より, $ \frac{\partial c(z)}{\partial z} = 0$となり,$ c(z) = c$.よって, $ \phi(x,y,z) = x^2 yz^3 + c$. ここで,初期値 $ \phi(1,-2,2) =4$より,$ -16+c = 4$となり,$ c = 20$.

6.

$\displaystyle (\nabla U) \times (\nabla V) = \left\vert\begin{array}{ccc}
\bold...
..._{z}V_{x} - U_{x}V_{z})\boldsymbol{j} + (U_{z}V_{y} - U_{y}V_{z})\boldsymbol{k}$

したがって,
$\displaystyle \nabla \cdot ((\nabla U) \times (\nabla V))$ $\displaystyle =$ $\displaystyle \frac{\partial(U_{y}V_{z} - U_{z}V_{y})}{\partial x} + \frac{\par...
...U_{x}V_{z})}{\partial y} + \frac{\partial(U_{x}V_{y} - U_{y}V_{x})}{\partial z}$  
  $\displaystyle =$ $\displaystyle U_{yx}V_{z} + U_{y}V_{zx} - U_{zx}V_{y} - U_{z}V_{yx} + U_{zy}V_{x} + U_{z}V_{xy} - U_{xy}V_{z} - U_{x}V_{zy}$  
  $\displaystyle +$ $\displaystyle U_{xz}V_{y} + U_{x}V_{yz} - U_{yz}V_{x} - U_{y}V_{xz} = 0$  

7.

$\displaystyle \frac{d\boldsymbol{r}}{dt}\cdot\nabla \phi = (\frac{dx}{dt}\bolds...
...artial \phi}{\partial z}\frac{\partial z}{\partial t} = \frac{d}{dt}\phi(x,y,z)$

8.

\includegraphics[width = 4cm]{VECANALFIG/3-5-8.eps}
合成関数の微分法より,

$\displaystyle \frac{d \phi}{dt} = \frac{\partial \phi}{\partial x}\frac{dx}{dt}...
...\nabla \phi \cdot\frac{d \boldsymbol{r}}{dt} + \frac{\partial \phi}{\partial t}$

演習問題詳解3.6

1.

(1)

$\displaystyle \nabla \times \boldsymbol{A} = \left\vert\begin{array}{ccc}
\bold...
...j}(4xz-3z^3) + \boldsymbol{k}(0) = y\boldsymbol{i} + (4xz - 3z^3)\boldsymbol{j}$

(2)

$\displaystyle \nabla \times (\phi \boldsymbol{A})$ $\displaystyle =$ $\displaystyle (\nabla \phi) \times \boldsymbol{A} + \phi \nabla \times \boldsymbol{A}$  
  $\displaystyle =$ $\displaystyle \left\vert\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \b...
... y} & \frac{\partial}{\partial z}\\
2xz^2 & -yz & 3xz^3
\end{array}\right\vert$  
  $\displaystyle =$ $\displaystyle (3x^3z^4 + x^2 y^2z)\boldsymbol{i} + (2x^3yz^2 -6x^2yz^4)\boldsym...
...^2-2x^3z^3)\boldsymbol{k} + x^2yz(y\boldsymbol{i} + (4xz - 3z^3)\boldsymbol{j})$  
  $\displaystyle =$ $\displaystyle (3x^3z^4 + 2x^2y^2)\boldsymbol{i} + (6x^3 yz^2 -9x^2 yz^4)\boldsymbol{i} - (2xy^2z^2 + 2x^3z^3)\boldsymbol{k}$  

(3) (1)より, $\nabla \times \boldsymbol{A} = y\boldsymbol{i} + (4xz - 3z^3)\boldsymbol{j}$.

$\displaystyle \nabla \times (\nabla \times \boldsymbol{A})$ $\displaystyle =$ $\displaystyle \left\vert\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \b...
...^3 & 0
\end{array}\right\vert = (-4x+9z^2)\boldsymbol{i} + (4z-1)\boldsymbol{k}$  

2.

$\displaystyle \nabla \times {\bf v}$ $\displaystyle =$ $\displaystyle \left\vert\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \b...
...vert = (c+1)\boldsymbol{i} + (a-4)\boldsymbol{j} + (b-2)\boldsymbol{k} = {\bf0}$  

より, $ a = 4, b = 2, c = -1$

3.

$\displaystyle \nabla \cdot(\boldsymbol{A} \times \boldsymbol{B})$ $\displaystyle =$ $\displaystyle (\frac{\partial}{\partial x}\boldsymbol{i} + \frac{\partial}{\par...
...\partial}{\partial z}\boldsymbol{k})\cdot(\boldsymbol{A} \times \boldsymbol{B})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i}\cdot\frac{\partial}{\partial x}(\boldsymbol{A}\tim...
...dsymbol{k}\cdot\frac{\partial}{\partial z}(\boldsymbol{A}\times \boldsymbol{B})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i}\cdot(\frac{\partial \boldsymbol{A}}{\partial x} \t...
...ldsymbol{B} + \boldsymbol{A} \times \frac{\partial \boldsymbol{B}}{\partial z})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{B}\cdot(\boldsymbol{i} \times \frac{\partial \boldsym...
...\frac{\partial \boldsymbol{A}}{\partial z}) \hskip 1cm ([A B C] = [C A B])$  
  $\displaystyle -$ $\displaystyle \boldsymbol{A}\cdot(\boldsymbol{i} \times \frac{\partial \boldsym...
...ymbol{B}\cdot(\boldsymbol{k} \times \frac{\partial \boldsymbol{B}}{\partial z})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{B}\cdot(\nabla \times \boldsymbol{A}) - \boldsymbol{A}\cdot(\nabla \times \boldsymbol{B}) = 0$  

(1)

$\displaystyle \nabla(\boldsymbol{A} \cdot\boldsymbol{B}) = (\boldsymbol{B}\cdot...
...la \times \boldsymbol{A}) + \boldsymbol{A}\times (\nabla \times \boldsymbol{B})$

を用いると,

$\displaystyle \nabla(\boldsymbol{C} \cdot\boldsymbol{A}) = (\boldsymbol{A}\cdot...
...la \times \boldsymbol{C}) + \boldsymbol{C}\times (\nabla \times \boldsymbol{A})$

ここで, $(\boldsymbol{A}\cdot\nabla)\boldsymbol{C} = 0, \boldsymbol{A} \times(\nabla \times \boldsymbol{C})= {\bf0}$より,

$\displaystyle \nabla(\boldsymbol{C}\cdot\boldsymbol{A}) = (\boldsymbol{C}\cdot\nabla)\boldsymbol{A} + \boldsymbol{C} \times (\nabla \times \boldsymbol{A})$

(2)

$\displaystyle \nabla \cdot(\boldsymbol{C} \times \boldsymbol{A})$ $\displaystyle =$ $\displaystyle (\frac{\partial }{\partial x}\boldsymbol{i} + \frac{\partial}{\pa...
...partial}{\partial z}\boldsymbol{k}) \cdot(\boldsymbol{C} \times \boldsymbol{A})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i}\cdot\frac{\partial}{\partial x}(\boldsymbol{C} \ti...
...symbol{k}\cdot\frac{\partial }{\partial z}\boldsymbol{C} \times \boldsymbol{A})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i}\cdot(\frac{\partial C}{\partial x} \times \boldsym...
...ldsymbol{A} + \boldsymbol{C} \times \frac{\partial \boldsymbol{A}}{\partial z})$  
  $\displaystyle =$ $\displaystyle -\boldsymbol{C} \cdot(\boldsymbol{i} \times \frac{\partial \bolds...
...mbol{C} \cdot(\boldsymbol{k} \times \frac{\partial \boldsymbol{A}}{\partial z})$  
  $\displaystyle =$ $\displaystyle -\boldsymbol{C} \cdot(\nabla \times \boldsymbol{A})$  

(3)

$\displaystyle \nabla \times (\boldsymbol{C} \times \boldsymbol{A})$ $\displaystyle =$ $\displaystyle (\boldsymbol{i}\frac{\partial }{\partial x} + \boldsymbol{j}\frac...
...l{k}\frac{\partial }{\partial z}) \times (\boldsymbol{C} \times \boldsymbol{A})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} \times \frac{\partial (\boldsymbol{C}\times\boldsy...
...ymbol{C}\times\boldsymbol{A})}{\partial z} \hskip 0.5cm (\boldsymbol{C}は定数ベクトル)$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} \times (\boldsymbol{C} \times \frac{\partial \bold...
...ldsymbol{C})\boldsymbol{B} - (\boldsymbol{A}\cdot\boldsymbol{B})\boldsymbol{C})$  
  $\displaystyle =$ $\displaystyle (\boldsymbol{i} \cdot\frac{\partial \boldsymbol{A}}{\partial x})\...
... (\boldsymbol{k} \cdot\boldsymbol{C})\frac{\partial \boldsymbol{A}}{\partial z}$  
  $\displaystyle =$ $\displaystyle \boldsymbol{C}(\nabla \cdot\boldsymbol{A}) - (\boldsymbol{C} \cdot\nabla)\boldsymbol{A}$  

5. 公式

$\displaystyle \nabla(\boldsymbol{A} \cdot\boldsymbol{B}) = (\boldsymbol{B}\cdot...
...la \times \boldsymbol{A}) + \boldsymbol{A}\times (\nabla \times \boldsymbol{B})$

を用いると,
$\displaystyle \nabla(\boldsymbol{A} \cdot\boldsymbol{A})$ $\displaystyle =$ $\displaystyle (\boldsymbol{A}\cdot\nabla)\boldsymbol{A} + (\boldsymbol{A}\cdot\...
...la \times \boldsymbol{A}) + \boldsymbol{A}\times (\nabla \times \boldsymbol{A})$  
  $\displaystyle =$ $\displaystyle 2(\boldsymbol{A}\cdot\nabla)\boldsymbol{A} + 2\boldsymbol{A} \times(\nabla \times \boldsymbol{A})$  

よって,

$\displaystyle (\boldsymbol{A}\cdot\nabla)\boldsymbol{A} = \frac{1}{2}\nabla \vert\boldsymbol{A}\vert^2 - \boldsymbol{A} \times (\nabla \times \boldsymbol{A})$

6. $\nabla \times (\rho \boldsymbol{F}) = (\nabla \rho)\times \boldsymbol{F} + \rho(\nabla \times \boldsymbol{F})$ また, $\nabla \times (\rho \boldsymbol{F}) = \nabla \times (\nabla p) = 0$より, $\nabla \times \boldsymbol{F} = -\frac{\nabla \rho}{\rho} \times \boldsymbol{F}$.したがって,

$\displaystyle \boldsymbol{F} \cdot(\nabla \times \boldsymbol{F}) = \boldsymbol{...
...l{F}) = \frac{\nabla \rho}{\rho}\cdot(\boldsymbol{F} \times \boldsymbol{F}) = 0$

7.

$\displaystyle \nabla \times \boldsymbol{A} = \left\vert\begin{array}{ccc}
\bold...
...1)\boldsymbol{i} - (3z^2 - 3z^2)\boldsymbol{j} + (6x-6x)\boldsymbol{k} = {\bf0}$

ここで, $\nabla \times \boldsymbol{A} = {\bf0}$より, $\boldsymbol{A} = -\nabla \phi$となる$ \phi$が存在することに注意する.

$\displaystyle \boldsymbol{A} = (6xy + z^3)\boldsymbol{i} + (3x^2 - z)\boldsymbo...
...hi}{\partial y}\boldsymbol{j} + \frac{\partial \phi}{\partial z}\boldsymbol{k})$

より,

$\displaystyle -\frac{\partial \phi}{\partial x} = 6xy + z^3, -\frac{\partial \phi}{\partial y} = 3x^2 -z, -\frac{\partial \phi}{\partial z} = 3xz^2 - y$

まず,- $ \frac{\partial \phi}{\partial x} = 6xy + z^3$より, $ -\phi(x,y,z) = 3x^2y + xz^3 + f(y,z)$.ここで,$ \phi$$ y$について偏微分すると,

$\displaystyle -\frac{\partial \phi}{\partial y} = 3x^2 + f_{y}(y,z)$

一方,

$\displaystyle -\frac{\partial \phi}{\partial y} = 3x^2 -z$

より,

$\displaystyle f_{y}(y,z) = -z$

これより, $ f(y,z) = -yz + g(z)$となる.よって, $ -\phi(x,y,z) = 3x^2 y + xz^3 - yz + g(z)$. ここで, $ \phi(x,y,z)$$ z$について偏微分すると,

$\displaystyle -\frac{\partial \phi}{\partial z} = 3xz^2 - y + g'(z)$

一方,

$\displaystyle -\frac{\partial \phi}{\partial z} = 3x^2 -y$

より,

$\displaystyle g'(z) = 0$

よって,$ g(z) = c$となり, $ \phi(x,y,z) = -(3x^2 y + xz^3 - yz + c)$

8.

演習問題詳解4.1

1.

(1) Gaussの発散定理より,

$\displaystyle \int_{S} \frac{\boldsymbol{r}}{r^2}\cdot\boldsymbol{n}\;dS = \int_{V}\nabla \cdot\frac{\boldsymbol{r}}{r^2}\;dV$

ここで,

$\displaystyle \nabla \cdot\frac{\boldsymbol{r}}{r^2} = \nabla \cdot(r^{-2}\bold...
...c{\boldsymbol{r}}{r}\cdot\boldsymbol{r} + 3r^{-2} = -2r^{-2} + 3r^{-2} = r^{-2}$

したがって,

$\displaystyle \int_{S} \frac{\boldsymbol{r}}{r^2}\cdot\boldsymbol{n}\;dS = \int_{V}\frac{1}{r^2}\;dV$

(2) $\int_{S}\boldsymbol{r} \times \boldsymbol{n}\;dS$を面積分の形に直す.任意の定ベクトル $\boldsymbol{C}$とスカラー3重積の性質を用いると

$\displaystyle \int_{S}\boldsymbol{C} \cdot(\boldsymbol{r} \times \boldsymbol{n})\;dS$ $\displaystyle =$ $\displaystyle \int_{S}\boldsymbol{n} \cdot(\boldsymbol{C} \times \boldsymbol{r})$  
  $\displaystyle =$ $\displaystyle \int_{V}\nabla \cdot(\boldsymbol{C} \times \boldsymbol{r})\;dV = ...
...rtial y} & \frac{\partial }{\partial z}\\
x & y & z
\end{array}\right\vert = 0$  

ここで, $\boldsymbol{C}$は任意の定ベクトルより,

$\displaystyle \int_{S}\boldsymbol{r} \times \boldsymbol{n}\;dS = 0$

(3) Gaussの発散定理より,

$\displaystyle \int_{S} r^{n} \boldsymbol{r}\cdot\boldsymbol{n}\;dS$ $\displaystyle =$ $\displaystyle \int_{V}\nabla \cdot r^{n}\boldsymbol{r}\;dV = \int_{V} \left((\nabla r^{n})\cdot\boldsymbol{r} + r^{n}\nabla \cdot\boldsymbol{r}\right)\;dV$  
  $\displaystyle =$ $\displaystyle \int_{V} (nr^{n-1}\nabla r \cdot\boldsymbol{r} + 3r^{n})\;dV = \int_{V}(nr^{n} + 3r^{n})\;dV$  
  $\displaystyle =$ $\displaystyle (3+n)\int_{V}r^{n}\;dV$  

(4) $\int_{S}r^{n}\boldsymbol{n}\;dS$を面積分の形に直す.任意の定ベクトル $\boldsymbol{C}$を用いると

$\displaystyle \int_{S}\boldsymbol{C} \cdot(r^{n}\boldsymbol{n})\;dS$ $\displaystyle =$ $\displaystyle \int_{S}r^{n}\boldsymbol{C}\cdot\boldsymbol{n}\;dS = \int_{V}\nab...
...\int_{V}(\nabla r^{n}\cdot\boldsymbol{C} + r^{n}\nabla \cdot\boldsymbol{C})\;dV$  
  $\displaystyle =$ $\displaystyle \int_{V}nr^{n-1}\frac{\boldsymbol{r}}{r}\cdot\boldsymbol{C}\;dV = \int_{V}\boldsymbol{C} \cdot nr^{n-2}\boldsymbol{r}\;dV$  

これより,

$\displaystyle \int_{S}r^{n}\boldsymbol{n} = \int_{V}nr^{n-2}\boldsymbol{r}\;dV$

(5) $\int_{S}r^{n}\boldsymbol{r} \times \boldsymbol{n}\;dS$を面積分の形に直す.任意の定ベクトル $\boldsymbol{C}$とスカラー3重積を用いると

$\displaystyle \int_{S}\boldsymbol{C}\cdot(r^{n}\boldsymbol{r} \times \boldsymbol{n})\;dS$ $\displaystyle =$ $\displaystyle \int_{S}\boldsymbol{n} \cdot\boldsymbol{C} \times (r^{n}\boldsymb...
...l{r})\;dS = \int_{V}\nabla \cdot(\boldsymbol{C} \times r^{n}\boldsymbol{r})\;dV$  
  $\displaystyle =$ $\displaystyle \int_{V}(-\boldsymbol{C} \cdot(\nabla \times r^{n}\boldsymbol{r})...
...ot(\nabla r^{n} \times \boldsymbol{r} + r^{n} \nabla \times \boldsymbol{r})\;dV$  
  $\displaystyle =$ $\displaystyle -\int_{V}\boldsymbol{C} \cdot(nr^{n-1}\frac{\boldsymbol{r}}{r} \times \boldsymbol{r} + 0)\;dV = 0$  

(6) $\int_{S}r^{2}\boldsymbol{n}\;dS$を面積分の形に直す.任意の定ベクトル $\boldsymbol{C}$を用いると,

$\displaystyle \int_{S}\boldsymbol{C}\cdot(r^{2}\boldsymbol{n})\;dS$ $\displaystyle =$ $\displaystyle \int_{S}r^{2}\boldsymbol{C} \cdot\boldsymbol{n}\;dS = \int_{V}\nabla \cdot(r^{2}\boldsymbol{C})\;dV$  
  $\displaystyle =$ $\displaystyle \int_{V} (\nabla r^{2} \cdot\boldsymbol{C} + r^{2}\nabla \cdot\boldsymbol{C})\;dV = \int_{V} (2r\frac{\boldsymbol{r}}{r} \cdot\boldsymbol{C})\;dV$  
  $\displaystyle =$ $\displaystyle \boldsymbol{C}\cdot\int_{V}2\boldsymbol{r}\;dV$  

したがって,

$\displaystyle \int_{S}r^{2}\boldsymbol{n}\;dS = 2\int_{V}\boldsymbol{r}\;dV$

(7) $\int_{S}F(r)\boldsymbol{n}\;dS$を面積分の形に直す.任意の定ベクトル $\boldsymbol{C}$を用いると,

$\displaystyle \int_{S}\boldsymbol{C}\cdot(F(r)\boldsymbol{n})\;dS$ $\displaystyle =$ $\displaystyle \int_{S}F(r)\boldsymbol{C} \cdot\boldsymbol{n}\;dS = \int_{V}\nab...
...\int_{V} (\nabla F(r) \cdot\boldsymbol{C} + F(r)\nabla \cdot\boldsymbol{C})\;dV$  
  $\displaystyle =$ $\displaystyle \int_{V} \frac{dF}{dr}\frac{\boldsymbol{r}}{r} \cdot\boldsymbol{C})\;dV = \boldsymbol{C}\cdot\int_{V}\frac{dF}{dr}\frac{\boldsymbol{r}}{r}\;dV$  

したがって,

$\displaystyle \int_{S}F(r)\boldsymbol{n}\;dS = \int_{V}\frac{dF}{dr}\frac{\boldsymbol{r}}{r}\;dV$

2. 任意の定ベクトル $\boldsymbol{C}$を用いて,面積分の形に直すと,

$\displaystyle \int_{S}\boldsymbol{C} \cdot(\boldsymbol{n}\times (\nabla \phi))\;dS$ $\displaystyle =$ $\displaystyle \int_{S} \boldsymbol{n} \cdot(\nabla \phi \times \boldsymbol{C})\;dS = \int_{V} \nabla \cdot(\nabla \phi \times \boldsymbol{C})\;dV$  
  $\displaystyle =$ $\displaystyle \int_{V}\left(\boldsymbol{C} \cdot(\nabla \times \nabla \phi) + \nabla \phi \cdot(\nabla \times \boldsymbol{C})\right)\;dV$  

ここで, $(\nabla \times \nabla \phi = 0, \nabla \times \boldsymbol{C} = {\bf0})$に注意すると,

$\displaystyle \int_{S}\boldsymbol{C} \cdot(\boldsymbol{n}\times (\nabla \phi))\;dS = 0$

3. 曲面$ S$の境界線を$ C$とするので,境界線で分けられた曲面を $ S_{1},S_{2}$とする.また,曲面$ S_{1}$の法単位ベクトルを $\boldsymbol{n}_{1}$$ S_{2}$の法単位ベクトルを $\boldsymbol{n}_{2}$とする.このとき,曲面$ S$の法単位ベクトルを $\boldsymbol{n}$とすると $\boldsymbol{n}_{1} = \boldsymbol{n}, \boldsymbol{n}_{2} = -\boldsymbol{n}$または, $\boldsymbol{n}_{1} = -\boldsymbol{n}, \boldsymbol{n}_{2} = \boldsymbol{n}$.ここで,

$\displaystyle \int_{S_{1}}\boldsymbol{A}\cdot\boldsymbol{n}_{1}\;dS + \int_{S_{...
...mbol{A}\cdot\boldsymbol{n}_{2}\;dS = \int_{V}\nabla \cdot\boldsymbol{A}\;dV = 0$

より,

$\displaystyle \int_{S_{1}}\boldsymbol{A}\cdot\boldsymbol{n}_{1}\;dS = -\int_{S_{2}}\boldsymbol{A}\cdot\boldsymbol{n}_{2}\;dS$

4.

(1) Gaussの発散定理より,

$\displaystyle \int_{S}\phi \boldsymbol{A}\cdot\boldsymbol{n}dS = \int_{V}\nabla \cdot(\phi \boldsymbol{A}\;dV$

ここで, $\nabla \cdot(\phi\boldsymbol{A})= (\nabla \phi) \cdot\boldsymbol{A} + \phi \nabla \cdot\boldsymbol{A}$であることに注意すると,

$\displaystyle \int_{S}\phi \boldsymbol{A}\cdot\boldsymbol{n}dS = \int_{V}(\nabla \phi) \cdot\boldsymbol{A}\;dV + \int_{V} \phi \nabla \cdot\boldsymbol{A}\;dV$

(2) Gaussの発散定理より,

$\displaystyle \int_{S}(\boldsymbol{B} \times \boldsymbol{A})\cdot\boldsymbol{n}dS = \int_{V}\nabla \cdot(\boldsymbol{B} \times \boldsymbol{A})\;dV$

ここで,演習問題#よ#>り, $\nabla \cdot(\boldsymbol{B} \times \boldsymbol{A}) = \boldsymbol{A}\cdot(\nabla \times \boldsymbol{B}) - \boldsymbol{B}\cdot(\nabla \times \boldsymbol{A})$.よって,

$\displaystyle \int_{S}(\boldsymbol{B} \times \boldsymbol{A})\cdot\boldsymbol{n}...
...symbol{B})\;dV - \int_{V}\boldsymbol{B} \cdot(\nabla \times \boldsymbol{A})\;dV$

(3) Gaussの発散定理より,

$\displaystyle \int_{S}((\nabla \phi) \times \boldsymbol{A})\cdot\boldsymbol{n}dS = \int_{V}\nabla \cdot((\nabla \phi) \times \boldsymbol{A})\;dV$

ここで,

$\displaystyle \nabla \cdot((\nabla \phi) \times \boldsymbol{A}) = \boldsymbol{A...
...bla \times \boldsymbol{A}) = -(\nabla \phi) \cdot(\nabla \times \boldsymbol{A})$

したがって,

$\displaystyle \int_{S}((\nabla \phi) \times \boldsymbol{A})\cdot\boldsymbol{n}dS = -\int_{V}(\nabla \phi) \cdot(\nabla \times \boldsymbol{A}\;dV$

(4) Gaussの発散定理より,

$\displaystyle \int_{S}\phi \boldsymbol{A} \cdot\boldsymbol{n}dS = \int_{V}\nabla \cdot(\phi \boldsymbol{A})\;dV$

ここで, $\boldsymbol{A} = \nabla \phi, \nabla^2 \phi = 0$より,

$\displaystyle \nabla \cdot(\phi \boldsymbol{A}) = (\nabla \phi)\cdot\boldsymbol...
... = \vert\boldsymbol{A}\vert^2 + \phi \nabla^2 \phi = \vert\boldsymbol{A}\vert^2$

したがって,

$\displaystyle \int_{S}\phi \boldsymbol{A} \cdot\boldsymbol{n}dS = \int_{V}\vert\boldsymbol{A}\vert^2\;dV$

5.

(1)
labelenshu:4-1-5-1 例題4.3のように,面積分の形に書き直す. $ \frac{\partial \phi}{\partial n}$は法線単位ベクトル $\boldsymbol{n}$方向での方向微分係数より, $\frac{\partial \phi}{\partial n} = \nabla \phi \cdot\boldsymbol{n}$.よって,

$\displaystyle \int_{S}\psi\frac{\partial \phi}{\partial n}dS = \int_{S}\psi \nabla \phi \cdot\boldsymbol{n}dS $

ここで,Gaussの発散定理を用いると,

$\displaystyle \int_{S}\psi \nabla \phi \cdot\boldsymbol{n}dS = \int_{V}\nabla \cdot(\psi \nabla \phi)\;dV$

なお, $ \nabla \cdot (\psi \nabla \phi) = (\nabla \psi)\cdot (\nabla \phi) + \psi \nabla \cdot (\nabla \phi) = (\nabla \psi)\cdot (\nabla \phi) + \psi \nabla^2 \phi$より,

$\displaystyle \int_{S}\psi \nabla \phi \cdot\boldsymbol{n}dS = \int_{V}\{\psi \nabla^2 \phi + (\nabla \psi) \cdot(\nabla \phi)\}\;dV$

(2) 例題4.3のように,面積分の形に書き直す. $ \frac{\partial \phi}{\partial n}$は法線単位ベクトル $\boldsymbol{n}$方向での方向微分係数より, $\frac{\partial \phi}{\partial n} = \nabla \phi \cdot\boldsymbol{n}$.よって,

$\displaystyle \int_{S}\phi\frac{\partial \phi}{\partial n}dS = \int_{S}\phi \nabla \phi \cdot\boldsymbol{n}dS $

ここで,Gaussの発散定理を用いると,

$\displaystyle \int_{S}\phi \nabla \phi \cdot\boldsymbol{n}dS = \int_{V}\nabla \cdot(\phi \nabla \phi)\;dV$

なお, $ \nabla \cdot (\phi \nabla \phi) = (\nabla \phi)\cdot (\nabla \phi) + \phi \nabla \cdot (\nabla \phi) = \vert\nabla \phi\vert^2 + \phi \nabla^2 \phi$より,

$\displaystyle \int_{S}\phi \nabla \phi \cdot\boldsymbol{n}dS = \int_{V}\{\phi \nabla^2 \phi + \vert\nabla \psi\vert^2\}\;dV$

(3) (1)の結果から(2)の結果を引くと,

$\displaystyle \int_{S}(\psi\frac{\partial \phi}{\partial n} - \phi\frac{\partial \phi}{\partial n})dS = \int_{V}\{\psi\nabla^2\phi - \phi \nabla^2 \phi\}\;dV$

(4) $ \phi$が調和関数とは, $ \nabla^2 \phi = 0$となることである.したがって,(2)を用いると,

$\displaystyle \int_{S}\phi\frac{\partial \phi}{\partial n}dS = \int_{V}\vert\nabla \phi\vert^2\;dV$

(5) $ \phi, \psi$が調和関数とは, $ \nabla^2 \phi = \nabla^2 \psi = 0$となることである.したがって,(3)を用いると,

$\displaystyle \int_{S}(\psi\frac{\partial \phi}{\partial n} - \phi\frac{\partial \phi}{\partial n})dS = \int_{V}\{\psi\nabla^2\phi - \phi \nabla^2 \phi\}\;dV = 0$

(6) $ \phi$が調和関数とすると,(4)より,

$\displaystyle \int_{S}\phi\frac{\partial \phi}{\partial n}dS = \int_{V}\vert\nabla \phi\vert^2\;dV$

$ S$上で$ \phi = 0$とすると, $ \int_{V}\vert\nabla \phi\vert^2\;dV = 0$となり, $ \vert\nabla \phi\vert^2 = 0$.よって, $ \vert\nabla \phi\vert = 0$. すなわち $ \nabla \phi = 0$.したがって,$ \phi$は定数.

6. $\int_{S}{\bf A}\cdot\boldsymbol{n}dS = 0$ならば,Gaussの発散定理より,

$\displaystyle \int_{S}{\bf A}\cdot\boldsymbol{n}dS = \int_{V}\nabla \cdot{\bf A}\;dV = 0$

したがって, $ \nabla \cdot {\bf A} = 0$. 定理3.4より,$ {\bf A}$はベクトル・ポテンシャルを持つ.

7. $\int_{S}{\bf A} \times \boldsymbol{n}dS = {\bf0}$.ここで,任意の定ベクトル$ {\bf C}$を用いて,面積分の形に直すと,

$\displaystyle \int_{S}{\bf C} \cdot({\bf A} \times \boldsymbol{n})\;dS = \int_{S} \boldsymbol{n} \cdot({\bf C} \times {\bf A})\;dS$

Gaussの発散定理より,

$\displaystyle \int_{S} \boldsymbol{n} \cdot({\bf C} \times {\bf A})\;dS = \int_{V}\nabla \cdot({\bf C} \times {\bf A})dV = 0$

ここで,,

$\displaystyle 0 = \nabla \cdot({\bf C} \times {\bf A}) = {\bf A} \cdot \nabla \...
... - {\bf C} \cdot \nabla \times {\bf A} = -{\bf C} \cdot (\nabla \times {\bf A})$

したがって, $ \nabla \times {\bf A} = 0$となり,$ {\bf A}$はスカラー・ポテンシャルをもつ.

演習問題詳解4.2

1.

1. Stokesの定理より,

$\displaystyle \int_{C}(\nabla \phi \psi)\cdot d\boldsymbol{r} = \int_{S}(\nabla \times (\nabla \phi \psi))\cdot\boldsymbol{n}dS = 0$

ここで,

$\displaystyle \nabla \phi \psi = \psi (\nabla \phi) + \phi (\nabla \psi)$

より,

$\displaystyle \int_{C}\phi(\nabla \psi)\cdot d\boldsymbol{r} = -\int_{C}\psi(\nabla \phi)\cdot d\boldsymbol{r}$

2.

(1) 線積分を $\int_{C}{\bf A}\cdot d\boldsymbol{r}$の形に直す.そこで,任意の定ベクトル$ {\bf C}$とスカラー3重積を用いると,

$\displaystyle \int_{C}{\bf C} \cdot\boldsymbol{r} \times d\boldsymbol{r} = \int_{C}d\boldsymbol{r} \cdot{\bf C} \times \boldsymbol{r}$

と表せる.ここで,Stokesの定理を用いると,
$\displaystyle \int_{C}d\boldsymbol{r} \cdot{\bf C} \times \boldsymbol{r}$ $\displaystyle =$ $\displaystyle \int_{S} (\nabla \times ({\bf C} \times \boldsymbol{r}))\cdot\boldsymbol{n}dS$  

さて,
$\displaystyle \nabla \times ({\bf C} \times \boldsymbol{r})$ $\displaystyle =$ $\displaystyle (\boldsymbol{i}\frac{\partial}{\partial x} + \boldsymbol{j}\frac{...
...oldsymbol{k}\frac{\partial}{\partial z}) \times ({\bf C} \times \boldsymbol{r})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} \times \frac{\partial ({\bf C} \times \boldsymbol{...
...oldsymbol{k} \times \frac{\partial ({\bf C} \times \boldsymbol{r})}{\partial z}$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} \times ({\bf C} \times \boldsymbol{r}_{x}) + \bold...
...\boldsymbol{r}_{y}) + \boldsymbol{k} \times ({\bf C} \times \boldsymbol{r}_{z})$  
  $\displaystyle =$ $\displaystyle (\boldsymbol{i} \cdot\boldsymbol{r}_{x}) {\bf C} - (\boldsymbol{i...
...dot\boldsymbol{r}_{z}){\bf C} - (\boldsymbol{k} \cdot{\bf C})\boldsymbol{r}_{z}$  
  $\displaystyle =$ $\displaystyle (\boldsymbol{i} \cdot\boldsymbol{r}_{x} + \boldsymbol{j} \cdot\bo...
...ot{\bf C})\boldsymbol{r}_{y} + (\boldsymbol{k} \cdot{\bf C})\boldsymbol{r}_{z})$  
  $\displaystyle =$ $\displaystyle (\nabla \cdot\boldsymbol{r}){\bf C} - ({\bf C} \cdot\nabla)\boldsymbol{r} +$  

ここで,

$\displaystyle \{({\bf C} \cdot\nabla)\boldsymbol{r}\} \cdot\boldsymbol{n} = {\bf C} \cdot\nabla (\boldsymbol{r} \cdot\boldsymbol{n})$

が成り立つので,
$\displaystyle \nabla \times ({\bf C} \times \boldsymbol{r}) \cdot\boldsymbol{n}$ $\displaystyle =$ $\displaystyle (\nabla \cdot\boldsymbol{r}){\bf C} \cdot\boldsymbol{n} - ({\bf C} \cdot\nabla){\bf A} \cdot\boldsymbol{n}$  
  $\displaystyle =$ $\displaystyle {\bf C} \cdot\{(\nabla \cdot\boldsymbol{r})\boldsymbol{n} - \nabla(\boldsymbol{r} \cdot\boldsymbol{n})\}$  

これより,

$\displaystyle \int_{C}{\bf C} \cdot\boldsymbol{r} \times d\boldsymbol{r} = \int...
...t\boldsymbol{r})\boldsymbol{n} - \nabla(\boldsymbol{r} \cdot\boldsymbol{n})\}dS$

ここで,$ C$は任意の定ベクトルであるから,

$\displaystyle \int_{C} \boldsymbol{r} \times d\boldsymbol{r} = \int_{S} \{(\nab...
...t\boldsymbol{r})\boldsymbol{n} - \nabla(\boldsymbol{r} \cdot\boldsymbol{n})\}dS$

最後に,

$\displaystyle \nabla (\boldsymbol{r} \cdot\boldsymbol{n}) = (\boldsymbol{n} \cd...
...bol{r}) + \boldsymbol{r} \times (\nabla \times \boldsymbol{n}) = \boldsymbol{n}$

したがって,

$\displaystyle \int_{C}\boldsymbol{r} \times d\boldsymbol{r} = \int_{S}(3\boldsymbol{n} - \boldsymbol{n})dS = 2\int_{S}\boldsymbol{n}dS$

(2) Stokesの定理を用いると,

$\displaystyle \int_{C}r^{k}\boldsymbol{r}\cdot d\boldsymbol{r}$ $\displaystyle =$ $\displaystyle \int_{S} (\nabla \times (r^{k}\boldsymbol{r}))\cdot\boldsymbol{n}dS$  

ここで,

$\displaystyle (\nabla r^{k})\times \boldsymbol{r} + r^{k} \nabla \times \boldsy...
...bol{r} + r^{k}(0) = kr^{k-2} \frac{\boldsymbol{r}}{r} \times \boldsymbol{r} = 0$

に注意すると,

$\displaystyle \int_{C}r^{k}\boldsymbol{r}\cdot d\boldsymbol{r} = 0$

(3) $ C$を任意の定数ベルトルとし,Stokesの定理を用いると,

$\displaystyle \int_{C}{\bf C} \cdot\boldsymbol{r}(\nabla \phi) \cdot d\boldsymbol{r}$ $\displaystyle =$ $\displaystyle \int_{S} (\nabla \times ({\bf C} \cdot\boldsymbol{r}(\nabla \phi)))\cdot\boldsymbol{n}dS$  

ここで,
$\displaystyle \nabla \times ({\bf C} \cdot\boldsymbol{r} (\nabla \phi))$ $\displaystyle =$ $\displaystyle \nabla({\bf C} \cdot\boldsymbol{r}) \times (\nabla \phi) + ({\bf ...
...a \times \nabla \phi = \nabla({\bf C} \cdot\boldsymbol{r}) \times (\nabla \phi)$  


$\displaystyle \nabla({\bf C} \cdot\boldsymbol{r})$ $\displaystyle =$ $\displaystyle (\boldsymbol{i}\frac{\partial}{\partial x} + \boldsymbol{j}\frac{...
...al y} + \boldsymbol{k}\frac{\partial ({\bf C} \cdot\boldsymbol{r})}{\partial z}$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} ({\bf C} \cdot\frac{\partial \boldsymbol{r}}{\part...
... y}) + \boldsymbol{k} ({\bf C} \cdot\frac{\partial \boldsymbol{r}}{\partial z})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} ({\bf C} \cdot\boldsymbol{i}) + \boldsymbol{j} ({\...
...} \cdot\boldsymbol{j}) + \boldsymbol{k} ({\bf C} \cdot\boldsymbol{k}) = {\bf C}$  

より,
$\displaystyle \int_{C}{\bf C} \cdot(\nabla (\nabla \phi))\cdot d\boldsymbol{r}$ $\displaystyle =$ $\displaystyle \int_{S} {\bf C} \times ({\bf C} \cdot\boldsymbol{r}(\nabla \phi)...
...oldsymbol{n}dS = \int_{S}({\vert bf C} \times \nabla \phi)\cdot\boldsymbol{n}dS$  
  $\displaystyle =$ $\displaystyle \int_{S}{\bf C} \cdot(\nabla \phi \times \boldsymbol{n})dS$  

したがって,

$\displaystyle \int_{C}\boldsymbol{r}(\nabla \phi)\cdot d\boldsymbol{r} = \int_{S}(\nabla \phi \times \boldsymbol{n})dS$

3. Stokesの定理より,

$\displaystyle \int_{C}\phi{\bf A}\cdot d\boldsymbol{r} = \int_{S}(\nabla \times \phi {\bf A})\cdot\boldsymbol{n}dS$

ここで,

$\displaystyle \nabla \times (\phi {\bf A}) = (\nabla \phi)\times {\bf A} + \phi \nabla \times {\bf A}$

であることに注意すると,

$\displaystyle \int_{C}\phi{\bf A}\cdot d\boldsymbol{r} = \int_{S}(\nabla \times...
...t\boldsymbol{n}dS + \int_{S}\{\phi \nabla \times {\bf A}\}\cdot\boldsymbol{n}dS$

4. 線積分を $\int_{C}{\bf A}\cdot d\boldsymbol{r}$の形に直す.そこで,任意の定ベクトル$ {\bf C}$とスカラー3重積,Stokesの定理を用いると,

$\displaystyle \int_{C}{\bf C} \cdot\frac{\boldsymbol{r} \times d\boldsymbol{r}}...
...}(\nabla \times \frac{{\bf C} \times \boldsymbol{r}}{r^3})\cdot\boldsymbol{n}dS$

と表せる.

ここで,ベクトル3重積を用いると

$\displaystyle \nabla \times \frac{{\bf C} \times \boldsymbol{r}}{r^3}$ $\displaystyle =$ $\displaystyle (\boldsymbol{i}\frac{\partial}{\partial x} + \boldsymbol{j}\frac{...
...k}\frac{\partial}{\partial z}) \times {\bf C} \times \frac{\boldsymbol{r}}{r^3}$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} \times {\bf C} \times \frac{\partial}{\partial x}(...
...} \times {\bf C} \times \frac{\partial}{\partial z}(\frac{\boldsymbol{r}}{r^3})$  
  $\displaystyle =$ $\displaystyle \left(\boldsymbol{i}\cdot\frac{\partial}{\partial x}(\frac{\bolds...
...dsymbol{j} \cdot{\bf C})\frac{\partial}{\partial y}(\frac{\boldsymbol{r}}{r^3})$  
  $\displaystyle +$ $\displaystyle \left(\boldsymbol{k}\cdot\frac{\partial}{\partial z}(\frac{\bolds...
...dsymbol{k} \cdot{\bf C})\frac{\partial}{\partial z}(\frac{\boldsymbol{r}}{r^3})$  
  $\displaystyle =$ $\displaystyle {\bf C}(\nabla \cdot(\frac{\boldsymbol{r}}{r^3})) - {\bf C}\cdot\nabla (\frac{\boldsymbol{r}}{r^3})$  

さらに,

$\displaystyle \nabla \cdot(\frac{\boldsymbol{r}}{r^3}) = \nabla \cdot(r^{-3}\bo...
...}\frac{\boldsymbol{r}}{r}\cdot\boldsymbol{r} + 3r^{-3} = -3r^{-3} + 3r^{-3} = 0$

より,

$\displaystyle \int_{C}{\bf C} \cdot\frac{\boldsymbol{r} \times d\boldsymbol{r}}...
...int_{S}\{{\bf C} \cdot\nabla(\frac{\boldsymbol{r}}{r^3})\}\cdot\boldsymbol{n}dS$

ここで,$ {\bf C}$は任意の定ベクトルであるから,

$\displaystyle \int_{C}\frac{\boldsymbol{r} \times d\boldsymbol{r}}{r^3} = -\int_{S}\nabla(\frac{\boldsymbol{r}}{r^3})\cdot\boldsymbol{n}dS$

最後に,
$\displaystyle \boldsymbol{n} \cdot\nabla (\frac{\boldsymbol{r}}{r^3})$ $\displaystyle =$ $\displaystyle (n_{1}\frac{\partial}{\partial x} + n_{2}\frac{\partial}{\partial y} + n_{3}\frac{\partial}{\partial z})(r^{-3}\boldsymbol{r})$  
  $\displaystyle =$ $\displaystyle n_{1}(\frac{\partial}{\partial x}(\frac{\boldsymbol{r}}{r^3}) + \...
...boldsymbol{r}}{r^3}) + \frac{1}{r^3}\frac{\partial \boldsymbol{r}}{\partial z})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{n} \cdot\nabla(\frac{1}{r^3})\boldsymbol{r} + \frac{\...
...oldsymbol{r}}{r}\cdot\boldsymbol{n} \boldsymbol{r} + \frac{\boldsymbol{n}}{r^3}$  
  $\displaystyle =$ $\displaystyle -3\frac{\boldsymbol{n} \cdot\boldsymbol{r}}{t^5}\boldsymbol{r} + \frac{\boldsymbol{n}}{r^3}$  

5. Stokesの定理より,

$\displaystyle 0 = \int_{C}{\bf A}\cdot d\boldsymbol{r} = \int_{S}(\nabla \times {\bf A})\cdot\boldsymbol{n}dS$

よって, $ \nabla \times {\bf A} = 0$.したがって,$ {\bf A}$はスカラー・ポテンシャルをもつ.

ベクトル解析のまとめ

ベクトル解析の問題を解くには以下の事柄を自分の物にしておくとよいでしょう.

基礎の基礎

ナブラ

$\displaystyle \nabla = \boldsymbol{i}\frac{\partial }{\partial x} + \boldsymbol{j}\frac{\partial}{\partial y} + \boldsymbol{k}\frac{\partial}{\partial z}$

ベクトルの外積

$\displaystyle {\bf A} \times {\bf B} = \left\vert\begin{array}{ccc}
\boldsymbol...
..._{2} & B_{3}
\end{array}\right\vert, \mbox{特に} {\bf A} \times {\bf A} = {\bf0}$

スカラー3重積

$\displaystyle {\bf A} \cdot ({\bf B} \times {\bf C}) = {\bf C} \cdot ({\bf A} \times {\bf B}) = -{\bf B} \cdot ({\bf A} \times {\bf C})$

ベクトル3重積

$\displaystyle {\bf A} \times ({\bf B} \times {\bf C}) = ({\bf A}\cdot {\bf C}){\bf B} - ({\bf A} \cdot {\bf B}){\bf C}$

方向微分係数 方向単位ベクトル $\boldsymbol{n}$

$\displaystyle \frac{\partial \phi}{\partial n} = (\nabla \phi) \cdot\boldsymbol{n}$

基本公式
位置ベクトルの大きさ $ r = \sqrt{x^2 + y^2 + z^2}$の勾配

$\displaystyle \nabla r = (\boldsymbol{i}\frac{\partial r}{\partial x} + \boldsy...
...2}} + \boldsymbol{k}\frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{\boldsymbol{r}}{r}$

位置ベクトル $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z \boldsymbol{k}$の発散

$\displaystyle \nabla \cdot\boldsymbol{r} = (\boldsymbol{i} \cdot\frac{\partial ...
... \boldsymbol{k}\cdot\frac{\partial \boldsymbol{r}}{\partial z}) = 1 + 1 + 1 = 3$

位置ベクトル $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z \boldsymbol{k}$の回転

$\displaystyle \nabla \times \boldsymbol{r} = \left\vert\begin{array}{ccc}
\bold...
...artial y} & \frac{\partial}{\partial z}\\
x & y & z
\end{array}\right\vert = 0$

スカラー場とベクトル場の積の微分法
スカラー場の勾配

$\displaystyle \nabla(\phi \psi) = \psi \nabla \phi + \phi \nabla \psi$

$\displaystyle \nabla r^{n} = \boldsymbol{i}\frac{\partial r^{n}}{\partial x} + ...
...{n-1}\frac{\partial r}{\partial z}) = nr^{n-1}\nabla r = nr^{n-2}\boldsymbol{r}$

ベクトル場の発散

$\displaystyle \nabla \cdot (\phi {\bf A}) = (\nabla \phi) \cdot {\bf A} + \phi \nabla \cdot {\bf A}$

$\displaystyle \nabla \cdot(r^{n}\boldsymbol{r}) = (\nabla r^n)\cdot\boldsymbol{...
...cdot\boldsymbol{r} = nr^{n-1}\nabla r \cdot\boldsymbol{r} + 3r^{n} = (n+3)r^{n}$

ベクトル場の回転

$\displaystyle \nabla \times (\phi {\bf A}) = (\nabla \phi)\times {\bf A} + \phi \nabla \times {\bf A}$

$\displaystyle \nabla \times (r^{n}\boldsymbol{r}) = (\nabla r^{n}) \times \bold...
...r}}{r} \times \boldsymbol{r} = nr^{n-2}\boldsymbol{r} \times \boldsymbol{r} = 0$

勾配,発散,回転の合成

勾配の回転

$\displaystyle \nabla \times (\nabla \phi) = \left\vert\begin{array}{ccc}
\bolds...
...\phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right\vert = 0$

回転の発散

$\displaystyle \nabla \cdot(\nabla \times {\bf A}) = (\boldsymbol{i}\frac{\parti...
...\frac{\partial}{\partial z}\\
A_{1} & A_{2} & A_{3}
\end{array}\right\vert = 0$

回転の回転

$\displaystyle \nabla \times (\nabla \times {\bf A})$ $\displaystyle =$ $\displaystyle (\boldsymbol{i}\frac{\partial}{\partial x} + \boldsymbol{j}\frac{...
...bf A}}{\partial y} + \boldsymbol{k} \times \frac{\partial {\bf A}}{\partial z})$  

ここで,
$\displaystyle \boldsymbol{i}\frac{\partial }{\partial x} \times (\boldsymbol{i}...
...bf A}}{\partial y} + \boldsymbol{k} \times \frac{\partial {\bf A}}{\partial z})$ $\displaystyle =$ $\displaystyle (\boldsymbol{i}\frac{\partial }{\partial x} \cdot\frac{\partial {...
...c{\partial}{\partial x} \cdot\frac{\partial {\bf A}}{\partial z})\boldsymbol{k}$  
  $\displaystyle =$ $\displaystyle \frac{\partial^2 A_{1}}{\partial x^2}\boldsymbol{i} + \frac{\part...
...{\partial x \partial z}\boldsymbol{k} - \frac{\partial^2 {\bf A}}{\partial x^2}$  

よって,

$\displaystyle \nabla \times (\nabla \times {\bf A}) = \nabla(\nabla \cdot {\bf A}) - \nabla^2 {\bf A}$

外積の発散

$\displaystyle \nabla \cdot({\bf A} \times {\bf B})$ $\displaystyle =$ $\displaystyle (\boldsymbol{i}\frac{\partial}{\partial x} + \boldsymbol{j}\frac{\partial}{\partial y} + \frac{\partial}{\partial z}) \cdot({\bf A} \times {\bf B})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} \cdot(\frac{\partial {\bf A}}{\partial x}\times {\...
...\partial z}\times {\bf B} + {\bf A} \times \frac{\partial {\bf B}}{\partial z})$  
  $\displaystyle =$ $\displaystyle {\bf B} \cdot(\boldsymbol{i} \times \frac{\partial {\bf A}}{\part...
...{\bf B}}{\partial y} + \boldsymbol{k} \cdot\frac{\partial {\bf B}}{\partial z})$  
  $\displaystyle =$ $\displaystyle {\bf B} \cdot (\nabla \times {\bf A}) - {\bf A} \cdot (\nabla \times {\bf B})$  

外積の回転

$\displaystyle \nabla \times ({\bf A} \times {\bf B})$ $\displaystyle =$ $\displaystyle (\boldsymbol{i} \frac{\partial}{\partial x} + \boldsymbol{j} \fra...
...y} + \boldsymbol{k}\frac{\partial}{\partial z}) \times ({\bf A} \times {\bf B})$  
  $\displaystyle =$ $\displaystyle \boldsymbol{i} \times (\frac{\partial {\bf A}}{\partial x}\times ...
...{\partial z}\times {\bf B} + {\bf A}\times \frac{\partial {\bf B}}{\partial z})$  
  $\displaystyle =$ $\displaystyle (\boldsymbol{i} \cdot{\bf B})\frac{\partial {\bf A}}{\partial x} ...
...{\partial z} - (\boldsymbol{k} \cdot\frac{\partial {\bf A}}{\partial z}){\bf B}$  
  $\displaystyle =$ $\displaystyle (B_{1}\frac{\partial {\bf A}}{\partial x} + B_{2}\frac{\partial {...
...\frac{\partial {\bf B}}{\partial y} + A_{3}\frac{\partial {\bf B}}{\partial z})$  
  $\displaystyle =$ $\displaystyle ({\bf B}\cdot \nabla){\bf A} - ({\bf A}\cdot \nabla){\bf B} + (\nabla \cdot {\bf B}){\bf A} - (\nabla \cdot {\bf A}){\bf B}$  

内積の勾配

$\displaystyle \nabla({\bf A} \cdot {\bf B}) = ({\bf B} \cdot \nabla){\bf A} + (...
...+ {\bf B} \times(\nabla \times {\bf A})+ {\bf A} \times (\nabla \times {\bf B})$

積分公式
ガウスの発散定理 ベクトル場 $\boldsymbol{F}(x,y,z) = F_{1}\boldsymbol{i} + F_{2}\boldsymbol{j} + F_{3}\boldsymbol{k}$ 内において,区分的に滑らかな閉曲面 $ S$ で囲まれた空間の領域を $ V$ とし, $ S$ の内部から外部に向かう法線ベクトルを $\boldsymbol{n}$ とすると,

$\displaystyle \int_{S}\boldsymbol{F} \cdot\boldsymbol{n}dS = \int_{V} \nabla \cdot\boldsymbol{F} dV $

例題 5..1  

$\int_{S}\boldsymbol{r} \times \boldsymbol{n}\; dS = 0$を証明せよ. 任意の定ベクトル $\boldsymbol{C}$とスカラー3重積の性質を用いると
$\displaystyle \int_{S}\boldsymbol{C} \cdot(\boldsymbol{r} \times \boldsymbol{n})\;dS$ $\displaystyle =$ $\displaystyle \int_{S}\boldsymbol{n} \cdot(\boldsymbol{C} \times \boldsymbol{r}...
...ymbol{r})\;dV = -\int_{V}\boldsymbol{C} \cdot(\nabla \times \boldsymbol{r}) = 0$  

ここで, $\boldsymbol{C}$は任意の定ベクトルより, $\int_{S}\boldsymbol{r} \times \boldsymbol{n}\;dS = 0.$ ストークスの定理 $ S:z = f(x,y), (x,y) \in \Omega$ をいくつかの区分的に滑らかな閉曲線を境界とする向きづけられた曲面とする.また,ベクトル場 $\boldsymbol{F}$$ S$ 上で $ C^{1}$ 級とする.そのとき,

$\displaystyle \oint_{\partial S}\boldsymbol{F}\cdot d\boldsymbol{r} = \int_{S}(\nabla \times \boldsymbol{F})\cdot\boldsymbol{n} dS $

ただし, $ \partial S$$ S$ の境界を表わし,曲線 $ \partial S$ 上の線積分の向きは領域 $ S$ を左手にみるように $ \partial S$ を一周するものとする.つまり,法線単位ベクトル $\boldsymbol{n}$ に対して右手の法則に従う.

例題 5..2  

$\int_{C}\phi (\nabla \psi)\cdot d\boldsymbol{r} = -\int_{C}\psi (\nabla \phi) \cdot d\boldsymbol{r}$を証明せよ. $\int_{C}(\nabla \phi \psi)\cdot d\boldsymbol{r} = \int_{S}(\nabla \times (\nabla \phi \psi))\cdot\boldsymbol{n}dS = 0$. ここで, $ \nabla \phi \psi = \psi (\nabla \phi) + \phi (\nabla \psi)$より,

$\displaystyle \int_{C}\phi(\nabla \psi)\cdot d\boldsymbol{r} = -\int_{C}\psi(\nabla \phi)\cdot d\boldsymbol{r}$

スカラー・ポテンシャル ベクトル場 $\boldsymbol{F}(x,y,z) \in C^{1}$ では次の 3つの条件は同値である.

(1) $\boldsymbol{F} = \nabla \phi$ となるスカラー関数 $ \phi(x,y,z)$ が存在する.( $\boldsymbol{F}$は保存場)

(2) いたるところ $\nabla \times \boldsymbol{F} = {\bf0}$ が成り立つ.(渦なし)

(3) 任意の閉曲線 $ C$ について $\oint_{C}\boldsymbol{F} \cdot d \boldsymbol{r} = 0$ が成り立つ (積分経路無関係).

例題 5..3  

$ xy$平面上で原点Oを中心とし半径$ a$の円を$ C$とする. $ \phi(x,y) = \tan^{-1}{\frac{y}{x}}$のとき, $\int_{C}(\nabla \phi)\cdot d\boldsymbol{r}$を求めよ. $ {\mathbf F} = \nabla \phi$より, $\int_{C}(\nabla \phi) \cdot d\boldsymbol{r} = 0$は間違い. ${\mathbf F} = \nabla \phi = \frac{-\frac{y}{x^2}}{1 + (\frac{y}{x})^2}\boldsymb...
...y}{x})^2}\boldsymbol{j} = \frac{-y\boldsymbol{i} + x\boldsymbol{j} }{x^2 + y^2}$は原点で微分可能でない.

$ C : x = a\cos{t}, y = a\sin{t},  0 \leq t \leq 2\pi$とパラメター化できる.これより, $\nabla \phi = \frac{-\sin{t}}{a}\boldsymbol{i} + \frac{\cos{t}}{a}\boldsymbol{j}$. また, $d\boldsymbol{r} = (-a\sin{t}\boldsymbol{i} + a\cos{t}\boldsymbol{j})dt$. したがって,

$\displaystyle \int_{C}(\nabla \phi) \cdot d\boldsymbol{r} = \int_{0}^{2\pi}(-\s...
...} +\cos{t}\boldsymbol{j})\cdot(-\sin{t} + \cos{t})dt = \int_{0}^{2\pi}dt = 2\pi$

例題 5..4  

$ S$が円柱面 $ x^2 + y^2 = 9$と平面 $ z = 0, z = 3$で囲まれている曲面のとき, $\int_{S} (x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k})\cdot\boldsymbol{n}dS$を次の方法で求めよ.

(1) 発散定理を用いて (2) 面積分を直接 (1) ${\bf A} = x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}$とおくと, $ \nabla \cdot {\bf A} = 3$.よって,発散定理より,

$\displaystyle \int_{S}{\bf A} \cdot\boldsymbol{n}dS = \int_{V}(\nabla \cdot{\bf A})dV = 3\int_{V}dV = 3V = 3(\pi(3)^2)(3) = 81\pi$

(2) まず,曲面$ S$は3つの面 $ S_{1} : x^2 + y^2 = 9, 0 \leq z \leq 3$ $ S_{2} : x^2 + y^2 \leq 9, z = 0$, $ S_{3} : x^2 + y^2 \leq 9, z = 3$で囲まれている. そこで,それぞれの面での面積分を求めることになる.

$ S_{1}$において,単位法ベクトルを求める. $ x^2 + y^2 = 9$より, $ x = \pm \sqrt{9 -y^2}$$ x > 0$の場合,位置ベクトル $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k} = \sqrt{9 - y^2}\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}$. これより,単位法ベクトル $\boldsymbol{n}$

$\displaystyle \boldsymbol{n} = \frac{\boldsymbol{r}_{y} \times \boldsymbol{r}_{...
...oldsymbol{r}_{z}\vert} = \frac{\sqrt{9-y^2}\boldsymbol{i} + y\boldsymbol{j}}{3}$

よって,

$\displaystyle {\bf A} \cdot\boldsymbol{n} = (\sqrt{9-y^2}\boldsymbol{i} + y\bol...
...c{\sqrt{9-y^2}\boldsymbol{i} + y\boldsymbol{j}}{3} = \frac{1}{3}(9-y^2+y^2) = 3$

ここで,$ S_{1}$$ yz$平面に正射影すると, $dS = \vert\boldsymbol{r}_{y} \times \boldsymbol{r}_{z}\vert dydz = \frac{3}{\sqrt{9-y^2}}dydz$より,

$\displaystyle \int_{S_{1}, x > 0}{\bf A} \cdot\boldsymbol{n}dS = 9\int_{y=-3}^{...
...3}^{3}\frac{1}{9-y^2}dy = 54\left[\sin^{-1}{\frac{y}{3}}\right]_{0}^{3} = 27\pi$

しかし,これは,円柱面 $ x^2 + y^2 = 9, 0 \leq z \leq 3$$ x > 0$の部分であるから,積分しなくてもその面積は$ 27\pi$と求まる.

$ x < 0$の場合,位置ベクトル $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k} = -\sqrt{9 - y^2}\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}$. これより,単位法ベクトル $\boldsymbol{n}$

$\displaystyle \boldsymbol{n} = \frac{\boldsymbol{r}_{z} \times \boldsymbol{r}_{...
...ldsymbol{r}_{y}\vert} = \frac{-\sqrt{9-y^2}\boldsymbol{i} + y\boldsymbol{j}}{3}$

よって,

$\displaystyle {\bf A} \cdot\boldsymbol{n} = (-\sqrt{9-y^2}\boldsymbol{i} + y\bo...
...{-\sqrt{9-y^2}\boldsymbol{i} + y\boldsymbol{j}}{3} = \frac{1}{3}(9-y^2+y^2) = 3$

したがって,

$\displaystyle \int_{S_{1}}{\bf A} \cdot\boldsymbol{n}dS = \int_{S_{1}}3dS = 3S_{1} = 3(2\pi(3))(3) = 54\pi$

$ S_{2}$では $\boldsymbol{n} = -\boldsymbol{k}$.よって, ${\bf A} \cdot\boldsymbol{n} = -z$. しかし,$ z = 0$より, ${\bf A} \cdot\boldsymbol{n} = 0$. したがって,

$\displaystyle \int_{S_{2}}{\bf A} \cdot\boldsymbol{n}dS = 0$

$ S_{3}$では $\boldsymbol{n} = \boldsymbol{k}$.よって, ${\bf A} \cdot\boldsymbol{n} = z$. ここで,$ z = 3$より, ${\bf A} \cdot\boldsymbol{n} = 3$. したがって,

$\displaystyle \int_{S_{3}}{\bf A} \cdot\boldsymbol{n}dS = 3\int_{S_{3}}dS = 3S_{3} = 3(9\pi) = 27\pi$

全てを加えると,

$\displaystyle \int_{S}{\bf A}\cdot\boldsymbol{n}dS = 81\pi$