Motion of objects

The curve

$\displaystyle C : \boldsymbol{r}(t) = (x(t), y(t), z(t)), \ t \in [a,b] $

can be thought of as the locus drawn by the point P moving in space. Here, the interval $[a, b]$ is considered as the interval of time, and $\boldsymbol{r}(t)$ is considered as the position of the object in time $t$. For the motion $\boldsymbol{r} = \boldsymbol{r}(t)$ $\boldsymbol{r}^{\ prime}(t)$ is called velocity.Also, $\boldsymbol{r}^{\prime\prime}(t)$ is acceleration and expressed by ${\bf v}(t),\boldsymbol{A}(t)$. Thus,,


$\displaystyle {\bf v}(t) = \boldsymbol{r}'(t) , \boldsymbol{A}(t)=\boldsymbol{r}''(t)$


As we have already learned, the tangent unit vector can be represented by $\displaystyle{{\ bf t} = \frac{d \boldsymbol{r}}{ds}}$ and the velocity vector is

$\displaystyle {\bf v}(t) = \frac{d\boldsymbol{r}(t)}{dt} = \frac{d\boldsymbol{r}(t)}{ds} \frac{ds}{dt} = \frac{ds}{dt} {\bf t}
$

Thus, velocity vector is a vector tangential to the locus of a point.The magnitude of the velocity vector ${\bf v}$, $\displaystyle{\frac{ds}{dt}}$ is the rate or speed of change in arc length and denoted by $v$. Thus

$\displaystyle v = \vert{\bf v}\vert = \vert\boldsymbol{r}'(t)\vert = \frac{ds}{dt}$

Next, to understand the acceleration a little better, let's consider the velocity vector. 

$\displaystyle {\bf v}(t) = \boldsymbol{r}'(t) = \frac{ds}{dt}{\bf t} = v{\bf t}$

Differentiate both sides of the above equation,

$\displaystyle \boldsymbol{A} = \frac{d{\bf v}}{dt} = \frac{dv}{dt}{\bf t} + v\f...
...f t}}{dt} = \frac{dv}{dt}{\bf t} + v\vert\frac{d{\bf t}}{dt}\vert\boldsymbol{n}$

Note that

$\displaystyle \frac{d{\bf t}}{dt} = \frac{d{\bf t}}{ds}\frac{ds}{dt} = v\frac{d{\bf t}}{ds}$

Then

$\displaystyle \vert\frac{d{\bf t}}{dt}\vert = \vert v \frac{d{\bf t}}{ds} \vert = v \vert\frac{d{\bf t}}{ds}\vert = v\kappa$

Therefore,
$\displaystyle \boldsymbol{A}$ $\displaystyle =$ $\displaystyle \frac{dv}{dt}{\bf t} + v^{2}\kappa\boldsymbol{n}$  
  $\displaystyle =$ $\displaystyle a_{{\bf t}} + a_{\boldsymbol{n}}$  


$\displaystyle a_{{\bf t}} = (\boldsymbol{A}\cdot{\bf t}){\bf t} , a_{\boldsymbol{n}} = (\boldsymbol{A}\cdot\boldsymbol{n})\boldsymbol{n}$


Example 2..12  

For

$\displaystyle \boldsymbol{r}(t) = (\cos\pi t, \sin\pi t, t)$

$t = 1$, find ${\bf v}(t),\boldsymbol{A}(t),v,{\bf t},\boldsymbol{n}$.

Answer

$\displaystyle \boldsymbol{r}(t) = (\cos\pi t, \sin\pi t, t)$

$\displaystyle {\bf v}(t) = \boldsymbol{r}'(t) = (-\pi\sin\pi t, \pi\cos\pi t, 1)$

$\displaystyle \boldsymbol{A}(t) = \boldsymbol{r}''(t) = (-\pi^{2}\cos\pi t, -\pi^{2}\sin\pi t, 0)$

Then for $t = 1$,
$\displaystyle {\bf v}(1)$ $\displaystyle =$ $\displaystyle (0, \pi, 1)$  
$\displaystyle \boldsymbol{A}(1)$ $\displaystyle =$ $\displaystyle (\pi^{2}, 0, 0)$  

Then

$\displaystyle v = \vert{\bf v}(1)\vert = \sqrt{\pi^{2} + 1}$

$\displaystyle {\bf t} = \frac{{\bf v}(1)}{\vert{\bf v}(1)\vert} = \frac{(0, \pi, 1)}{\sqrt{\pi^{2} + 1}}$

Now we have many ways to find $\boldsymbol{n}$. Here we will consider a method that is easy to calculate.

$\displaystyle \boldsymbol{A} = a_{{\bf t}} + a_{\boldsymbol{n}},a_{{\bf t}} = (\boldsymbol{A}\cdot{\bf t}){\bf t} = 0 $

implies

$\displaystyle a_{\boldsymbol{n}} = \boldsymbol{A} - \boldsymbol{A}_{{\bf t}} = (\pi^{2}, 0, 0) $

Thus,

$\displaystyle \boldsymbol{n} = \frac{a_{\boldsymbol{n}}}{\vert a_{\boldsymbol{n}}\vert} = (1,0,0)$

Other way is

$\displaystyle v = \vert{\bf v}(t)\vert = \sqrt{\pi^{2}\sin^{2}\pi t + \pi^{2}\cos^{2}\pi t + 1} = \sqrt{\pi^{2} + 1} $

$\displaystyle a_{{\bf t}} = \frac{dv}{dt} = 0$

Thus, $\displaystyle{\boldsymbol{n} = \frac{a_{\boldsymbol{n}}}{\vert a_{\boldsymbol{n}}\vert} = (1, 0, 0)}$

The vector

$\displaystyle \boldsymbol{B} = {\bf t} \times \boldsymbol{n} $

which is orthogonal to the unit normal vector ${\bf t}$ and the normal vector $\boldsymbol{n}$ is called binormal unit vector. Also, the $\tau$ satisfying

$\displaystyle \frac{d \boldsymbol{B}}{ds} = - \tau \boldsymbol{n} $

is called torsion.

Now, let's examine the three unit vectors ${\bf t}, \boldsymbol{n}, \boldsymbol{B}$ that have appeared so far.

Figure 2.4:
\begin{figure}\vskip -1cm
\begin{center}
\includegraphics[width=8cm]{VECANALFIG/Fig5-2-2.eps}
\end{center}\vskip -2cm
\end{figure}
The plane made by ${\bf t}$ and $\boldsymbol{n}$ is called osculating plane. the plane made by $\boldsymbol{n}$ and $\boldsymbol{B}$ is called normal plane. the plane made by ${\bf t}$ and $\boldsymbol{B}$is called rectifying plane.

First, ${\bf t}, \boldsymbol{n}, \boldsymbol{B}$ are orthogonal to each other. Also, these vectors satisfies the following relations.

Theorem 2..3  

[Frenet-Serret]

$\displaystyle \frac{d {\bf t}}{ds} = \kappa \boldsymbol{n}, \frac{d \boldsymbol...
... t} + \tau \boldsymbol{B}, \frac{d \boldsymbol{B}}{ds} = - \tau \boldsymbol{n} $


Proof By the equation 2.1, $\displaystyle{\frac{d {\bf t}}{ds} = \kappa \boldsymbol{n}}$. Also, by the definition of torsion, $\displaystyle{\frac{d \boldsymbol{B}}{ds} = - \tau \boldsymbol{n}}$.Next differentiate $\boldsymbol{n} \times {\bf t}$ with respect to $s$, we have

$\displaystyle \frac{d \boldsymbol{n}}{ds} = \frac{d \boldsymbol{B}}{ds} \times ...
...ldsymbol{B} \times \frac{d {\bf t}}{ds} = \tau \boldsymbol{B} - \kappa {\bf t} $

Example 2..13  

For the curve $\boldsymbol{r} = 2a(\sin^{-1}{t} + t\sqrt{1- t^2})\:\boldsymbol{i} + 2at^2\:\boldsymbol{j} + 4at\:\boldsymbol{k}$,find the followings. However, $a$ is an arbitrary positive constant.

$(a)$ the arc length the curve for $t_{1} \leq t \leq t_{2}$

$(b)$ the unit tangent vector ${\bf t}$

$(c)$ the normal vector $\boldsymbol{n}$ and the curvature $\kappa$

$(d)$ the binormal vector $\boldsymbol{B}$ and the torsion $\tau$

Answer (a) $\displaystyle{\frac{d \boldsymbol{r}}{dt} = 4a \sqrt{1 - t^2}\:\boldsymbol{i} + 4at\:\boldsymbol{j} + 4a\:\boldsymbol{k}}$ implies

$\displaystyle \vert\frac{d \boldsymbol{r}}{dt}\vert = \sqrt{16a^2 (1- t^2) + 16a^2 t^2 + 16a^2} = \sqrt{32 a^2} = 4\sqrt{2} a $

Therefore,

$\displaystyle s = \int_{t_{1}}^{t_{2}} \vert \frac{d \boldsymbol{r}}{dt}\vert dt = 4\sqrt{2} a (t_{2} - t_{1}) $

(b)

$\displaystyle {\bf t} = \frac{d \boldsymbol{r}}{ds} = \frac{d \boldsymbol{r}/dt...
...-t^2}\:\boldsymbol{i} + 4at\:\boldsymbol{j} + 4a\:\boldsymbol{k}}{4\sqrt{2} a} $

(c) $\displaystyle{\frac{d {\bf t}}{dt} = \frac{1}{\sqrt{2}}(\frac{-t}{\sqrt{1 - t^2}}\:\boldsymbol{i} + \boldsymbol{j}), \frac{ds}{dt} = 4\sqrt{2} a}$ より

$\displaystyle \kappa = \vert\frac{d {\bf t}}{ds}\vert = \vert\frac{d {\bf t}/dt...
...vert = \frac{1}{8a}\sqrt{\frac{t^2}{1 - t^2} + 1} = \frac{1}{8a \sqrt{1 - t^2}}$

また, $\displaystyle{\boldsymbol{n} = \frac{1}{\kappa}\frac{d {\bf t}}{ds}}$ より

$\displaystyle \boldsymbol{n} = -t\:\boldsymbol{i} + \sqrt{1 - t^2}\:\boldsymbol{j}$

(d)

$\displaystyle \boldsymbol{B} = {\bf t} \times \boldsymbol{n} = \frac{1}{\sqrt{2...
...{\sqrt{2}}(-\sqrt{1 - t^2}\:\boldsymbol{i} -t\:\boldsymbol{j} + \boldsymbol{k} $

Also,

$\displaystyle \frac{d \boldsymbol{B}}{ds} = \frac{d \boldsymbol{B}/dt}{ds/dt} =...
...frac{t}{\sqrt{1- t^2}}\:\boldsymbol{i} -\boldsymbol{j}) = - \tau \boldsymbol{n}$

より $\displaystyle{\tau = \frac{1}{8a \sqrt{1 - t^2}}}$