Normal Matrix

Exercise4-4

1. Find the unitary matrix $U$ so that $U^{-1}AU$ is diagonal.

$\displaystyle A = \left(\begin{array}{cc}
1&1-i\\
1+i&2
\end{array}\right)$

2. Find the orthogonal matrix $P$ so that $P^{-1}AP$ is diagonal.

$\displaystyle A = \left(\begin{array}{rrr}
1&0&-1\\
0&-1&0\\
-1&0&1
\end{array}\right)$

3. Find a condition so that $A = \left(\begin{array}{rr}
0&a_{1}\\
a_{2}&0
\end{array}\right)$ can be transformed to diagonal matrix by the unitary matrixD

4. Find the orthogonal matrix so that the following bilinear form becomes the standard form.

$\displaystyle x_{1}^2 + 2x_{2}^{2} - 3x_{3}^{2} + 2x_{1}x_{2} $

5. Standarize the following Hermite matrix by using unitary matrix.

$\displaystyle x_{1}\bar{x_{1}} + (1 - i)x_{1}\bar{x_{2}} + (1 + i)x_{2}\bar{x_{1}} + 2x_{2}\bar{x_{2}} $