Matrix Transformation

Exercise3-4

1. Find the transposed matrix $P$ which maps the basis $\{{\bf v}_{1} = \left(\begin{array}{r}
1\\
-1
\end{array}\right), {\bf v}_{2} = \left(\begin{array}{r}
1\\
1
\end{array}\right) \}$ of ${\mathcal R}^{2}$ to the basis $\{{\bf w}_{1} = \left(\begin{array}{r}
3\\
1
\end{array}\right), {\bf w}_{2} = \left(\begin{array}{r}
-1\\
2
\end{array}\right) \}$.

2. Show that the transposed matrix $P$ which maps the basis $\{{\bf v}_{i}\}$ to the basis $\{{\bf w}_{i}\}$ of $R^{n}$ is regular .

3. Find all eigenvalues and all eigenvetors of the following matrices.

(a) $\left(\begin{array}{rr}
3&-1\\
1&1
\end{array}\right) $ (b) $\left(\begin{array}{rrr}
2&1&0\\
0&1&-1\\
0&2&4
\end{array}\right) $ (c) $\left(\begin{array}{rrr}
1&4&-4\\
-1&-3&2\\
0&2&-1
\end{array}\right) $

4. Find the eigenvalue of the square matrix $A$ which satisfies $A^{2} = A$

5. Let the eigenvalues of $A$ be $\lambda_{1},\lambda_{2},\ldots,\lambda_{n}$. Then show that the eigenvalues of $A^{m}$ are $\lambda_{1}^{m}, \lambda_{2}^{m}, . . , \lambda_{n}^{m}$.

6. Given $A = \left(\begin{array}{rr}
3&1\\
-1&1
\end{array}\right)$. Find $A^{4},A^{-1}$ using Cayley-Hamilton theorem.

7. Suppose $X$ is the matrix of order 2. Find all $X$ satisfying $X^{2} - 3X + 2I = 0$