Differential equations

Exercise 1.1
1.. Show that $e^{x},xe^{x},c_{1}e^{x}+c_{2}xe^{x}$ are solutions of $y^{\prime\prime} -2y^{\prime} + y = 0$.

For $y(0) = 1,\ y^{\prime}(0) = -1$,find $c_{1},c_{2}$.
2.. Show that $\sin{x},\cos{x}$ and their linear combination is the solution of $y^{\prime\prime} + y = 0$. What can you say about the spanning vector space by $\sin{x}$ and $\cos{x}$?

Answer
1. Since $y = e^{x}$, we have $y^{\prime} = e^{x}, y^{\prime\prime} = e^{x}$.Thus,

$\displaystyle y^{\prime\prime} -2y^{\prime} + y = e^{x} - 2e^{x} + e^{x} = 0 $

For $y = xe^{x}$, we have $y^{\prime} = e^{x} + xe^{x}, y^{\prime\prime} = 2e^{x} + xe^{x}$. Thus,

$\displaystyle y^{\prime\prime} -2y^{\prime} + y = 2e^{x} + xe^{x} - 2(e^{x} + xe^{x}) + xe^{x} = 0 $

For $y = c_{1}e^{x}+c_{2}xe^{x}$, we have $y^{\prime} = c_{1}e^{x} + c_{2}(e^{x} + xe^{x}), y^{\prime\prime} = c_{1}e^{x} + c_{2}(2e^{x} + xe^{x})$. Thus,
$\displaystyle y^{\prime\prime} -2y^{\prime} + y$ $\displaystyle =$ $\displaystyle c_{1}e^{x} + c_{2}(2e^{x} + xe^{x}) - 2(c_{1}e^{x} + c_{2}(e^{x} + xe^{x})) + c_{1}e^{x}+c_{2}xe^{x}$  
  $\displaystyle =$ $\displaystyle c_{1}(e^{x} - 2e^{x} + e^{x}) + c_{2}(2e^{x} + xe^{x} - 2(e^{x} + xe^{x}) + xe^{x}) = 0$  

For $y = c_{1}e^{x}+c_{2}xe^{x}, \ y(0) = 1,\ y^{\prime}(0) = -1$, we find $c_{1},c_{2}$. Since $y(0) = 1$, $1 = y(0) = c_{1}$.Thus, $c_{1} = 1$. $y^{\prime}(0) = -1$ implies that $-1 = y^{\prime}(0) = c_{1} + c_{2}$. Then $c_{2} = -2$.

2. For $y = \sin{x}$, $y^{\prime} = \cos{x}, y^{\prime\prime} = -\sin{x}$. Thus,

$\displaystyle y^{\prime\prime} + y = -\sin{x} + \sin{x} = 0$

For $y = \cos{x}$, $y^{\prime} = -\sin{x}, y^{\prime\prime} = -\cos{x}$. Thus,

$\displaystyle y^{\prime\prime} + y = -\cos{x} + \cos{x} = 0$

For $y = c_{1}\sin{x} + c_{2}\cos{x}$, $y^{\prime} = c_{1}\cos{x} - c_{2}\sin{x}, y^{\prime\prime} = -c_{1}\sin{x} - c_{2}\cos{x}$. Thus

$\displaystyle y^{\prime\prime} + y = -c_{1}\sin{x} - c_{2}\cos{x} + c_{1}\sin{x} + c_{2}\cos{x} = 0$

We consider the vector space spanned by $\sin{x}$ and $\cos{x}$. Note that the vector space spanned by $\sin{x}$ ans $\cos{x}$ can be expressed by the following.

$\displaystyle V(\sin{x},\cos{x}) = \{c_{1}\sin{x} + c_{2}\cos{x} : c_{1},c_{2} \in R\} $

In other words, it is a linear combination of $\sin{x}$ and $\cos{x}$,We now find the dimension of this vector space.

$\displaystyle c_{1}\sin{x} + c_{2}\cos{x} = 0, c_{1}\cos{x} - c_{2}\sin{x} = 0 $

implies that $c_{1} = c_{2} = 0$. Thus, we can say that $\sin{x}$ and $\cos{x}$are linearly independent. Therefore,the dimension of $V(\sin{x},\cos{x})$ is 2.