Series Solution(case of ordinary point)

Exercise4.2
1. Find the series solution of the following differential equations about $x = 0$.

(a) $\ y^{\prime} + y = e^{x}$
(b) $\ y^{\prime\prime} + xy = 0$
(c) $\ xy^{\prime} - y = x^{2}e^{x} $
(d) $\ y^{\prime\prime} + xy^{\prime} - 4y = 0$
2. Find the series solution of the following differential equations about the indicated point.

(a) $\ y^{\prime\prime} + (x-2)y = 0, \ a = 2 $
(b) $\ y^{\prime\prime} + xy^{\prime} + 3y = x^2, \ a = 1$

4.2
1.
(a) Since $P(x) = 1, Q(x) = 1, R(x) = e^{x}$$x = 0$ is an ordinary point. Thus, we set the solution

$\displaystyle y(x) = \sum_{n=0}^{\infty}c_{n}x^{n} $

Then

$\displaystyle y^{\prime} = \sum_{n=1}^{\infty}nc_{n}x^{n-1} $

Since $e^{x} = \sum_{n=0}^{\infty}x^{n}/n!$, we substitute this into the given equation. Then

$\displaystyle \sum_{n=1}^{\infty}nc_{n}x^{n-1} + \sum_{n=0}^{\infty}c_{n}x^{n} = \sum_{n=0}^{\infty}\frac{x^n}{n!} $

Simplifying this,

$\displaystyle \sum_{n=1}^{\infty}nc_{n}x^{n-1} + \sum_{n=0}^{\infty}(c_{n} - \frac{1}{n!})x^{n} = 0 $

Now align the power of $x$ to be the least power $n-1$.

$\displaystyle \sum_{n=1}^{\infty}[nc_{n} + c_{n-1} - \frac{1}{(n-1)!}]x^{n-1} = 0 . $

Using term by term differentiation. the coefficients of $x^{n-1}$ are all 0. Thus, we have

$\displaystyle nc_{n} + c_{n-1} - \frac{1}{(n-1)!} = 0 ,  n \geq 1 . $

or

$\displaystyle c_{n} = \frac{1}{n!} - \frac{c_{n-1}}{n} $

Now that the value of $c_{0}$ is determined by $y(0)$. In this case, $c_0$ is treated as constant. Thus, we find $c_{1},c_{2},\ldots$. Then

$\displaystyle c_{1} = 1 - c_{0},  c_{2} = \frac{c_{0}}{2},  c_{3} = \frac{1}{3!} - \frac{c_{0}}{3!}, \cdots $

From this,

$\displaystyle c_{2n} = \frac{c_{0}}{(2n)!)}, c_{2n+1} = \frac{1 - c_{0}}{(2n+1)!} .$

Put this into $y(x) = \sum_{n=0}^{\infty}c_{n}x^{n}$. Then
$\displaystyle y$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}c_{2n}x^{2n} + \sum_{n=0}^{\infty}c_{2n+1}x^{2n+1}$  
  $\displaystyle =$ $\displaystyle c_{0}\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} - c_{0} \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$  
  $\displaystyle =$ $\displaystyle c_{0}\sum_{n=0}^{\infty} \frac{(-1)^{n}x^{n}}{(n)!} + \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$  

Therefore, the solution is given by the following function.

$\displaystyle y = c_{0}e^{-x} + \frac{e^{x}- e^{-x}}{2}.   $


(b) Since $P(x) = 0, Q(x) = x, R(x) = 0$$x = 0$ is an ordinary point. Then we set our solution as

$\displaystyle y(x) = \sum_{n=0}^{\infty}c_{n}x^{n} $

Then

$\displaystyle y^{\prime} = \sum_{n=1}^{\infty}nc_{n}x^{n-1} $

$\displaystyle y^{\prime\prime} = \sum_{n=2}^{\infty}n(n-1)c_{n}x^{n-2} $

Put these into the given equation. We have

$\displaystyle \sum_{n=2}^{\infty}n(n-1)c_{n}x^{n-2} + \sum_{n=0}^{\infty}c_{n}x^{n+1} = 0 $

Now align the power of $x$ to be the smallest $n-2$. Then

$\displaystyle \sum_{n=2}^{\infty}n(n-1)c_{n}x^{n-2} + \sum_{n=3}^{\infty} c_{n-3}x^{n-2} = 0 . $

Next align the series index to the largest one.

$\displaystyle 2c_{2} + \sum_{n=3}^{\infty}[n(n-1)c_{n} + c_{n-3}]x^{n-2} = 0 $

Using the term by term differentiation, the coefficients of $x^{n-1}$are all 0. Then we have the following recurrence relation.

$\displaystyle c_{2} = 0,  n(n-1)c_{n} + c_{n-3} = 0 ,  n \geq 3 . $

or

$\displaystyle c_{2} = 0,  c_{n} = -\frac{c_{n-3}}{n(n-1)} $

Note that the value of $c_{0},c_{1}$ are determined by $y(0), y^{\prime}(0)$. So, we can think of them as constants. Thus, we find $c_{2},c_{3},\ldots$ interms of $c_0, c_1$.

$\displaystyle c_{3} = \frac{c_{0}}{3 \cdot 2},  c_{4} = \frac{-c_{1}}{4 \cdot 3},  c_{5} = 0, \cdots $

Thus

$\displaystyle c_{3n} = \frac{c_{3n}}{c_{3n-3}}\frac{c_{3n-3}}{c_{3n-6}}\cdots\f...
...c_{3}}{c_{0}}c_{0} = \frac{(-1)^{n}(3n-2)(3n-5) \cdots 4 \cdot 1}{(3n)!}c_{0}, $

$\displaystyle c_{3n+1} = \frac{c_{3n+1}}{c_{3n-2}}\frac{c_{3n-2}}{c_{3n-5}}\cdo...
...{4}}{c_{1}}c_{1} = \frac{(-1)^{n}(3n-1)(3n-4) \cdots 5 \cdot 2}{(3n+1)!}c_{1}, $

Put this into $y(x) = \sum_{n=0}^{\infty}c_{n}x^{n}$. Then
$\displaystyle y$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}c_{3n}x^{3n} + \sum_{n=0}^{\infty}c_{3n+1}x^{3n+1}$  

where

$\displaystyle c_{3n} = \frac{(-1)^{n}(3n-2)(3n-5) \cdots 4\cdot1}{(3n)!}c_{0}, c_{3n+1} = \frac{(-1)^{n}(3n-1)(3n-4) \cdots 5\cdot2}{(3n+1)!}c_{1}, $

(c) Since $P(x) = x, Q(x) = -1, R(x) = x^2 e^x$$x = 0$ is an ordinary point. Then we set

$\displaystyle y(x) = \sum_{n=0}^{\infty}c_{n}x^{n} $

Then,

$\displaystyle y^{\prime} = \sum_{n=1}^{\infty}nc_{n}x^{n-1} $

Put this into the given equation.

$\displaystyle \sum_{n=1}^{\infty}nc_{n}x^{n} - \sum_{n=0}^{\infty}c_{n}x^{n} = \sum_{n=0}^{\infty}\frac{x^{n+2}}{n!} $

Now we align the power of $x$ to be the least $n$. Then

$\displaystyle \sum_{n=1}^{\infty}nc_{n}x^{n} + \sum_{n=0}^{\infty}c_{n}x^{n} - \sum_{n=2}^{\infty}\frac{x^{n}}{(n+2)!} = 0 . $

Next we align the series indexto the largest one. Then

$\displaystyle c_{1}x - c_{0} - c_{1}x + \sum_{n=2}^{\infty}[nc_{n} - c_{n} - \frac{1}{(n-2)!}]x^{n} = 0. $

Using term by term differentiation, the coefficients of $x^{n}$ are all 0. Thus, we have the recurrence relation.

$\displaystyle c_{0} = 0,  (n-1)c_{n} - \frac{1}{(n-2)!} = 0 ,  n \geq 2 . $

or

$\displaystyle c_{0} = 0,  c_{n} = \frac{1}{(n-1)!} $

Note that the value of $c_1$ is determined by the initial condition $y^{\prime}(0)$. Thus, we can think of $c_1$ as a constant.
$\displaystyle y$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}c_{n}x^{n}$  
  $\displaystyle =$ $\displaystyle c_{1}x + \sum_{n=2}^{\infty} c_{n} x^{n}$  
  $\displaystyle =$ $\displaystyle c_{1}x + \sum_{n=2}^{\infty} \frac{x^{n}}{(n-1)!}$  
  $\displaystyle =$ $\displaystyle c_{1}x + x(\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} - 1)$  

Therefore, the solution is given by the following elementary function.

$\displaystyle y = c_{1}x + x(e^{x} - 1).   $


(d) Since $P(x) = x, Q(x) = -4, R(x) = 0$$x = 0$ is an ordinary point. Thus we set

$\displaystyle y(x) = \sum_{n=0}^{\infty}c_{n}x^{n} $

Then

$\displaystyle y^{\prime} = \sum_{n=1}^{\infty}nc_{n}x^{n-1} $

$\displaystyle y^{\prime\prime} = \sum_{n=2}^{\infty}n(n-1)c_{n}x^{n-2} $

Now put these into the given equation.

$\displaystyle \sum_{n=2}^{\infty}n(n-1)c_{n}x^{n-2} + \sum_{n=0}^{\infty}nc_{n}x^{n} - 4\sum_{n=0}^{\infty}c_{n}x^{n} = 0 $

Then align the power of $x$ to the least $n$.

$\displaystyle \sum_{n=2}^{\infty}n(n-1)c_{n}x^{n-2} + \sum_{n=3}^{\infty}(n-2)c_{n-2}x^{n-2} - 4\sum_{n=2}^{\infty}c_{n-2}x^{n-2} = 0 . $

We next align the series index to the largest one.

$\displaystyle 2c_{2} - 4c_{0} + \sum_{n=3}^{\infty}[n(n-1)c_{n} + (n-6)c_{n-2}]x^{n-2} = 0. $

Using the term by term differentiation, we see that the coefficients of $x^{n}$ are all 0. So, we have the recurrent equation.

$\displaystyle 2c_{2} - 4c_{0} = 0,  n(n-1)c_{n} + (n-6)c_{n-2} = 0 ,  n \geq 3 $

or

$\displaystyle c_{2} = 2c_{0},  c_{n} = -\frac{(n-6)c_{n-2}}{n(n-1)},  n \geq 3 $

Note that $c_{0},c_{1}$ are determined by $y(0), y^{\prime}(0)$. Then we can think of these as arbitrary constants. Thus, we find $c_{2},c_{3},\ldots$ interms of $c_0, c_1$. Now

$\displaystyle c_{2} = 2c_{0},  c_{3} = \frac{-c_{1}}{2}, \cdots $

Thus,

$\displaystyle c_{2n} = \frac{c_{2n}}{c_{2n-2}}\frac{c_{2n-2}}{c_{2n-4}}\frac{c_{2n-4}}{c_{2n-6}}c_{2n-6}, n \leq 2  c_{2n} = 0, n \geq 3 $

Also,

$\displaystyle c_{2n+1} = \frac{c_{2n+1}}{c_{2n-1}}\frac{c_{2n-1}}{c_{2n-3}}\cdo...
...{c_{3}}{c_{1}}c_{1} = \frac{3(-1)^{n}c_{1}}{2^n n! (2n+1)(2n-1)(2n-3)}x^{2n+1} $

Thus, we have
$\displaystyle y$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}c_{n}x^{n}$  
  $\displaystyle =$ $\displaystyle c_{0} + 2c_{0}x^{2} - \frac{c_{0}}{3}x^4 - c_{1}\sum_{n=2}^{\infty} \frac{3(-1)^{n}}{2^n n! (2n+1)(2n-1)(2n-3)}x^{2n+1}$  

2.
(a) Since $P(x) = 0, Q(x) = x-2, R(x) = 0$$a = 2$ is an ordinary point. Then we let the solution

$\displaystyle y(x) = \sum_{n=0}^{\infty}c_{n}(x-2)^{n} $

Thus,

$\displaystyle y^{\prime} = \sum_{n=1}^{\infty}nc_{n}(x-2)^{n-1} $

$\displaystyle y^{\prime\prime} = \sum_{n=2}^{\infty}n(n-1)c_{n}(x-2)^{n-2} $

Put these into the given equation. Then we have

$\displaystyle \sum_{n=2}^{\infty}n(n-1)c_{n}(x-2)^{n-2} + \sum_{n=0}^{\infty}c_{n}(x-2)^{n+1} = 0 $

Now align the power of $(x-2)$ to the least $n-2$. Then

$\displaystyle \sum_{n=2}^{\infty}n(n-1)c_{n}x^{n-2} + \sum_{n=3}^{\infty}c_{n-3}(x-2)^{n-2} = 0 . $

Next align the series indexto the largest one. Then

$\displaystyle 2c_{2}(x-2) + \sum_{n=3}^{\infty}[n(n-1)c_{n} + c_{n-3}](x-2)^{n-2} = 0. $

Using the term by term differentiation, we see that the coefficients of $(x-2)^{n}$ are all 0. Thus, we have the recurrence relation.

$\displaystyle c_{2} = 0,  n(n-1)c_{n} + c_{n-3} = 0 ,  n \geq 3 $

or

$\displaystyle c_{2} = 0,  c_{n} = -\frac{c_{n-3}}{n(n-1)},  n \geq 3 $

Note that $c_{0},c_{1}$ are determined by $y(0), y^{\prime}(0)$. Then we can think of these as arbitrary constants. Thus, we find $c_{2},c_{3},\ldots$ interms of $c_0, c_1$. Now

$\displaystyle c_{2} = 0,  c_{3} = \frac{-c_{1}}{3\cdot 2}, c_{4} = \frac{-c_{1}}{4\cdot 3} \cdots $

Then
$\displaystyle c_{3n}$ $\displaystyle =$ $\displaystyle \frac{c_{3n}}{c_{3n-3}}\frac{c_{3n-3}}{c_{3n-6}}\cdots \frac{c_{3}}{c_{0}}c_{0}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)}{3n(3n-1)}\cdot \frac{(-1)}{(3n-3)(3n-4)}\cdots \frac{(-1)}{3\cdot 2}c_{0}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^n (3n-2)(3n-5)\cdots4 \cdot 1 c_{0}}{(3n)!}$  

or
$\displaystyle c_{3n+1}$ $\displaystyle =$ $\displaystyle \frac{c_{3n+1}}{c_{3n-2}}\frac{c_{3n-2}}{c_{3n-5}}\cdots \frac{c_{4}}{c_{1}}c_{1}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)}{(3n+1)(3n)}\cdot \frac{(-1)}{(3n-2)(3n-3)}\cdots \frac{(-1)}{4\cdot 3}c_{0}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^n (3n-1)(3n-4)\cdots 2 c_{1}}{(3n+1)!}$  
$\displaystyle c_{3n+2}$ $\displaystyle =$ $\displaystyle \frac{c_{3n+2}}{c_{3n-1}}\frac{c_{3n-1}}{c_{3n-4}}\cdots \frac{c_{5}}{c_{2}}c_{2} = 0.$  

Thus, we have
$\displaystyle y$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}c_{3n}(x-2)^{3n} + \sum_{n=0}^{\infty}c_{3n+1}(x-2)^{3n+1} + \sum_{n=0}^{\infty}c_{3n+2}(x-2)^{3n+2}$  
  $\displaystyle =$ $\displaystyle c_{0}\sum_{n=0}^{\infty} \frac{(-1)^n (3n-2)(3n-5)\cdots4 \cdot 1 }{(3n)!}(x-2)^{3n}$  
  $\displaystyle +$ $\displaystyle c_{1}\sum_{n=0}^{\infty} \frac{(-1)^n (3n-1)(3n-4)\cdots 2 }{(3n+1)!} (x-2)^{3n+1}$  

(b) Since $P(x) = x, Q(x) = 3, R(x) = x^2$$a = 1$ is an ordinary point. Then let

$\displaystyle y(x) = \sum_{n=0}^{\infty}c_{n}(x-1)^{n} $

and

$\displaystyle y^{\prime} = \sum_{n=1}^{\infty}nc_{n}(x-1)^{n-1} $

$\displaystyle y^{\prime\prime} = \sum_{n=2}^{\infty}n(n-1)c_{n}(x-1)^{n-2} $

Put these into the given equation. Then we have

$\displaystyle \sum_{n=2}^{\infty}n(n-1)c_{n}(x-1)^{n-2} + \sum_{n=0}^{\infty}nc_{n}(x-1)^{n} + \sum_{n=0}^{\infty}3c_{n}(x-1)^{n} = x^2 $

Now align the power of $(x-1)$ to the least $n-2$. ,
    $\displaystyle \sum_{n=2}^{\infty}n(n-1)c_{n}x^{n-2} + \sum_{n=3}^{\infty}(n-2)c_{n-2}(x-1)^{n-2} + \sum_{n=2}^{\infty}3c_{n-2}(x-1)^{n-2}$  
  $\displaystyle =$ $\displaystyle (x-1)^2 + 2(x-1) + 1 .$  

Next align the series index to the $n=3$. Then

$\displaystyle 2c_{2} + 3c_{0} + \sum_{n=3}^{\infty}[n(n-1)c_{n} + (n-2)c_{n-2} + 3c_{n-2}](x-1)^{n-2} = (x-1)^2 + 2(x-1) + 1. $

Both sides are equal. Thus, we have

$\displaystyle 2c_{2} + 3c_{0}= 1, 6c_{3} + c_{1} + 3c_{1} = 2, 12c_{4} + 2c_{2} + 3c_{2} = 1, $

$\displaystyle n(n-1)c_{n} + (n+1)c_{n-2} = 0 ,  n \geq 5 $

Note hat $c_{0},c_{1}$ are determined by $y(0), y^{\prime}(0)$. Then we can think of these as arbitray constants. Thus, we find $c_{2},c_{3},c_{4},\ldots$ interms of $c_-. c_1$. Then we have

$\displaystyle c_{2} = \frac{1-3c_{0}}{2}, c_{3} = \frac{1-3c_{1}}{3}, c_{4} = \frac{-1 + 5c_{0}}{8},  c_{n} = -\frac{(n+1)c_{n-2}}{n(n-1)},  n \geq 5 $


$\displaystyle c_{2n}$ $\displaystyle =$ $\displaystyle \frac{c_{2n}}{c_{2n-2}}\frac{c_{2n-2}}{c_{2n-4}}\cdots \frac{c_{6}}{c_{4}}c_{4}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)(2n+1)}{2n(2n-1)}\cdot \frac{(-1)(2n-1)}{(2n-2)(2n-3)}\cdots \frac{(-1)7}{6\cdot 5}c_{4}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^n (2n+1)}{2^n n!}\frac{4\cdot 3}{-5}\cdot \frac{2\cdot 1}{-3}c_{4}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^n (2n+1)}{2^n n!}\frac{4\cdot 3}{-5}\cdot \frac{2\cdot 1}{-3}(\frac{-1 + 5c_{0}}{8})$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^n (2n+1)}{2^n n!}(c_{0} - \frac{1}{5})$  

Also,
$\displaystyle c_{2n+1}$ $\displaystyle =$ $\displaystyle \frac{c_{2n+1}}{c_{2n-1}}\frac{c_{2n-1}}{c_{2n-3}}\cdots \frac{c_{5}}{c_{3}}c_{3}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)(2n+2)}{(2n+1)(2n)}\cdot \frac{(-1)(2n)}{(2n-1)(2n-2)}\cdots \frac{(-1)6}{5 \cdot 4}c_{3}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^n 2^n (n+1)!}{(2n+1)!}(\frac{3\cdot 2}{-4})c_{3}$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^n 2^n (n+1)!}{(2n+1)!}(\frac{3\cdot 2}{-4} \cdot \frac{2-4c_{1}}{6})$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^n 2^n (n+1)!}{(2n+1)!}(c_{1} - \frac{1}{2})$  

Thus, we have
$\displaystyle y$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}c_{2n}(x-1)^{2n} + \sum_{n=0}^{\infty}c_{2n+1}(x-1)^{2n+1}$  
  $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n (2n+1)}{2^n n!}(c_{0} - \frac{1}{5})(x-1)^{2n}$  
  $\displaystyle +$ $\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n 2^n (n+1)!}{(2n+1)!}(c_{1} - \frac{1}{2})(x-1)^{2n+1}$