Solution of Linear Differential Equations

Exercise 2.1
1.
The following differential equations have the solution of the form $e^{mx}$. Find the n independent solutions. Then show the general solution. Also, show that the solutons are linearly independent by using Wronski's determinant.

(a) $\ y^{\prime\prime\prime} + y^{\prime\prime} -10y^{\prime} + 8y = 0$
(b) $\ y^{\prime\prime} + 4y^{\prime} + 3y = 0$
(c) $\ y^{\prime\prime} - y^{\prime} = 0$
(d) $\ y^{\prime\prime\prime} - 8y^{\prime\prime} + 7y^{\prime} = 0$
2. The following differential equations have the solution of the form $\cos{mx},\sin{mx}$. Find the general solution..
(a) $ y^{\prime\prime} + 4y = 0   \htmlref{(b)}{enshu:2-1-1-b}  y^{(4)} + 4y^{\prime\prime} + 3y = 0$
3. The following differential equations have the solution of the form $x^{m}$. FInd the general solution.
(a) $ x^{2}y^{\prime\prime} + xy^{\prime} - 4y = 0  \htmlref{(b)}{enshu:2-1-3-b}  x^{2}y^{\prime\prime} - xy^{\prime} - 3y = 0$

Answer
1. (a) Let $L(y) = y^{\prime\prime\prime} + y^{\prime\prime} -10y^{\prime} + 8y$. Then

$\displaystyle L(e^{mx})$ $\displaystyle =$ $\displaystyle m^{3}e^{mx} + m^{2}e^{mx} - 10me^{mx} + 8e^{mx}$  
  $\displaystyle =$ $\displaystyle e^{mx}(m^3 + m^2 - 10m + 8)$  
  $\displaystyle =$ $\displaystyle e^{mx}(m-1)(m^2 + 2m - 8) = e^{mx}(m-1)(m-2)(m+4)$  

Then, for $m = -4, 1, 2$ $L(e^{mx}) = 0$. Thus, $e^{-4x},e^{x},e^{2x}$ are solutions and

$\displaystyle y = c_{1}e^{-4x} + c_{2}e^{x} + c_{3}e^{2x} $

now to show these solutions are linearly independent, we need to show Wronski's determinant is not 0. Thus,

$\displaystyle W(e^{-4x},e^{x},e^{2x}) = \left \vert \begin{array}{ccc}
e^{-4x}...
... \\
-4 & 1 & 2 \\
16 & 1 & 4
\end{array} \right \vert = 30e^{-x} \neq 0 \ $

(b) Let $L(y) = y^{\prime\prime} + 4y^{\prime} + 3y$. Then

$\displaystyle L(e^{mx})$ $\displaystyle =$ $\displaystyle m^{2}e^{mx} + 4me^{mx} + 3e^{mx}$  
  $\displaystyle =$ $\displaystyle e^{mx}(m^2 + 4m + 3)$  
  $\displaystyle =$ $\displaystyle e^{mx}(m+1)(m+3)$  

Then for $m = -3, -1$ $L(e^{mx}) = 0$. Thus, $e^{-3x},e^{-x}$ are solutions and the general solution is

$\displaystyle y = c_{1}e^{-3x} + c_{2}e^{-x} $

To show that these solutions are linearly independent, Wronski's determinant is not 0. Thus,

$\displaystyle W(e^{-3x},e^{-x}) = \left \vert \begin{array}{cc}
e^{-3x} & e^{-x} \\
-3e^{-3x} & -e^{-x} \end{array} \right \vert = 2e^{-4x} \neq 0 \ $

(c) Let $L(y) = y^{\prime\prime} - y^{\prime} $. Then

$\displaystyle L(e^{mx})$ $\displaystyle =$ $\displaystyle m^{2}e^{mx} - me^{mx}$  
  $\displaystyle =$ $\displaystyle e^{mx}(m^2 - m)$  
  $\displaystyle =$ $\displaystyle e^{mx}(m(m - 1))$  

Thus, for $m = 0 , 1$ $L(e^{mx}) = 0$. Then $1,e^{x}$ are solutions and the general solution is

$\displaystyle y = c_{1} + c_{2}e^{x} $

To show these solutions are linearly independet, it is enough to show that Wronski's determinant is not 0.

$\displaystyle W(1,e^{x}) = \left \vert \begin{array}{cc}
1 & e^{x} \\
0 & e^{x} \end{array} \right \vert = e^{x} \neq 0 \ $

(d) Let $L(y) = y^{\prime\prime\prime} - 8y^{\prime\prime} + 7y^{\prime} $. Then

$\displaystyle L(e^{mx})$ $\displaystyle =$ $\displaystyle m^{3}e^{mx} - 8m^{2}e^{mx} + 7me^{mx}$  
  $\displaystyle =$ $\displaystyle e^{mx}(m^3 - 8m^{2} + 7m)$  
  $\displaystyle =$ $\displaystyle e^{mx}(m(m^2 - 8m + 7)) = e^{mx}(m(m-1)(m-7))$  

Thus for $m = 0, 1, 7$ $L(e^{mx}) = 0$. Then $1,e^{x},e^{7x}$ are solutions and the general solution is

$\displaystyle y = c_{1} + c_{2}e^{x} + c_{3}e^{7x} $

To show these solutions are linearly independent, it is enough to show Wronski's determinant is not 0.

$\displaystyle W(1,e^{x},e^{7x}) = \left \vert \begin{array}{ccc}
1 & e^{x} & e...
...e^{7x}\\
0 & e^{x} & 49 e^{7x} \end{array} \right \vert = 42 e^{8x} \neq 0 \ $

2. (a) Let $L(y) = y^{\prime\prime} + 4y$. Then

$\displaystyle L(\cos{mx})$ $\displaystyle =$ $\displaystyle -m^{2}\cos{mx} + 4\cos{mx}$  
  $\displaystyle =$ $\displaystyle \cos{mx}(4 - m^2)$  
  $\displaystyle =$ $\displaystyle \cos{mx}(2 + m)(2 - m)$  

Thus for $m = -2, 2$ $L(\cos{mx}) = 0$. Thus, $\cos{(-2x)} = \cos{2x}$ is a solution.
$\displaystyle L(\sin{mx})$ $\displaystyle =$ $\displaystyle -m^{2}\sin{mx} + 4\sin{mx}$  
  $\displaystyle =$ $\displaystyle \sin{mx}(4 - m^2)$  
  $\displaystyle =$ $\displaystyle \sin{mx}(2 + m)(2 - m)$  

Thus for $m = -2, 2$ $L(\sin{mx}) = 0$. Thusm $\sin{-2x} = -\sin{2x}$ is also a solution. Note that for $\cos{2x}$ and $\sin{2x}$, we have

$\displaystyle W(\cos{2x},\sin{2x}) = \left \vert \begin{array}{cc}
\cos{2x} & \sin{2x} \\
-2\sin{2x} & 2\cos{2x} \end{array} \right \vert = 2 $

Thus, they are linearly independent and the general solution is

$\displaystyle y = c_{1}\cos{2x} + c_{2}\sin{2x} \ \ $

(b) Let $L(y) = y^{(4)} + 4y^{\prime\prime} + 3y$. Then

$\displaystyle L(\cos{mx})$ $\displaystyle =$ $\displaystyle m^{4}\cos{mx} - 4m^{2}\cos{mx} + 3\cos{mx}$  
  $\displaystyle =$ $\displaystyle \cos{mx}(m^4 - 4m^2 + 3)$  
  $\displaystyle =$ $\displaystyle \cos{mx}(m^2 - 1)(m^2 - 3)$  

Thus for $m = \pm 1, \pm \sqrt{3}$ $L(\cos{mx}) = 0$. Then $\cos{x}, \cos{\sqrt{3}x}$ are solutions.
$\displaystyle L(\sin{mx})$ $\displaystyle =$ $\displaystyle m^4 \sin{mx} - 4m^{2}\sin{mx} + 3\sin{mx}$  
  $\displaystyle =$ $\displaystyle \sin{mx}(m^4 - 4m^2 + 3)$  
  $\displaystyle =$ $\displaystyle \sin{mx}(m^2 - 1)(m^2 - 3)$  

Then for $m = \pm 1, \pm \sqrt{3}$ $L(\sin{mx}) = 0$. Thus, $\sin{x}, \sin{\sqrt{3}x}$ are also solutions. Now we check to see $\cos{x}, \cos{\sqrt{3}x}, \sin{x}, \sin{\sqrt{3}x}$ are linearly independent.
$\displaystyle W$ $\displaystyle =$ $\displaystyle \left \vert \begin{array}{cccc}
\cos{x} & \cos{\sqrt{3}x} & \sin{...
...n{\sqrt{3}x} & -\cos{x} & -3\sqrt{3}\cos{\sqrt{3}x} \\
\end{array}\right \vert$  
  $\displaystyle =$ $\displaystyle -4\sqrt{3}$  

Thus, it is linearly indenpendent. Therefore, the general solution is

$\displaystyle y = c_{1}\cos{x} + c_{2}\sin{x} + c_{3}\cos{\sqrt{3}x} + c_{4}\sin{\sqrt{3}x} \ \ $

3. (a) Let $L(y) = x^{2}y^{\prime\prime} + x y^{\prime} - 4 y$.

$\displaystyle L(x^{m})$ $\displaystyle =$ $\displaystyle x^{2}m(m-1)x^{m-2} + x mx^{m-1} - 4x^{m}$  
  $\displaystyle =$ $\displaystyle x^{m}(m^2 - m + m - 4) = x^{m}(m^2 - 4)$  
  $\displaystyle =$ $\displaystyle x^{m}(m + 2)(m - 2)$  

Then for $m = \pm 2$ $L(x^{m}) = 0$. Thus, $x^{-2}, x^{2}$ are solutions. Note that $x^{-2}, x^{2}$ satisfies

$\displaystyle W(x^{-2}, x^{2}) = \left \vert \begin{array}{cc}
x^{-2} & x^{2} \\
-2x^{-1} & 2x
\end{array} \right \vert = 4x^{-1} $

Thus they are linearly independent. Therefore, the general solution is

$\displaystyle y = c_{1}x^{-2} + c_{2}x^{2} \ \ $

(b) Let $L(y) = x^{2}y^{\prime\prime} - x y^{\prime} - 3y$.

$\displaystyle L(x^{m})$ $\displaystyle =$ $\displaystyle x^{2}m(m-1)x^{m-2} - x mx^{m-1} - 3x^{m}$  
  $\displaystyle =$ $\displaystyle x^{m}(m^2 - m - m - 3) = x^{m}(m^2 - 2m - 3)$  
  $\displaystyle =$ $\displaystyle x^{m}(m + 1)(m - 3)$  

Then for $m = -1, 3$ $L(x^{m}) = 0$. Thus, $x^{-1}, x^{3}$ are solutions. Note that $x^{-1}, x^{3}$ satisfies

$\displaystyle W(x^{-1}, x^{3}) = \left \vert \begin{array}{cc}
x^{-1} & x^{3} \\
-x^{-2} & 3x^{2}
\end{array} \right \vert = 4x $

Thus, it is linearly independent and the general solution is

$\displaystyle y = c_{1}x^{-1} + c_{2}x^{3} \ \ $