Reduction of order

Let

$\displaystyle L(y) = y^{\prime\prime} + a_{1}(x)y^{\prime} + a_{0}(x)y = f(x) $

Suppose that a solution $y_{1}(x)$ of $L(y) = 0$ is known. Then substitute $y = u(x)y_{1}(x)$ into $L(y) = f(x)$.

$\displaystyle (u^{\prime\prime}y_{1} + 2u^{\prime}y_{1}^{\prime} + uy_{1}^{\pri...
...ime}) + a_{1}(x)(u^{\prime}y_{1} + uy_{1}^{\prime}) + a_{0}(x)(uy_{1}) = f(x). $

or

$\displaystyle y_{1}u^{\prime\prime} + (2y_{1}^{\prime} + a_{1}y_{1})u^{\prime} + (y_{1}^{\prime\prime} + a_{1}y_{1}^{\prime} + a_{0}y_{1})u = f(x) $

Since $L(y_{1}) = 0$, we note that the coefficient of $u$ is 0. Now let $u^{\prime} = w$. Then we have a 1st order linear differential equation in $w$.

$\displaystyle y_{1}w^{\prime} + (2y_{1}^{\prime} + a_{1}y_{1})w = f(x). $

Example 2..5   Using the $y_{1} = e^{x}$ is a solution of $y^{\prime\prime} - y = 0$, find the general solution of

$\displaystyle y^{\prime\prime} - y = xe^{x}. $

SOLUTION Let $y = uy_{1} = ue^{x}$. Then $y^{\prime} = u^{\prime}e^{x} + ue^{x}, y^{\prime\prime} = u^{\prime\prime}e^{x} + 2u^{\prime}e^{x} + ue^{x} $. Substitute these into $y^{\prime\prime} - y = xe^{x}$. Then

$\displaystyle u^{\prime\prime}e^{x} + 2u^{\prime}e^{x} = xe^{x}. $

or

$\displaystyle u^{\prime\prime} + 2u^{\prime} = x. $

Now let $u^{\prime} = w$. Then we have the following linear differential equation in $w$.

$\displaystyle w^{\prime} + 2w = x $

$\mu = e^{\int 2dx} = e^{2x}$ and $d(e^{2x}w) = xe^{2x}dx$. Integrate this with respect to $x$ to get

$\displaystyle e^{2x}w = \frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x} + c_1$

Thus,

$\displaystyle w = c_{1}e^{-2x} + \frac{x}{2} - \frac{1}{4} $

Now integrate with respect to $x$

$\displaystyle u = \int w dx = -\frac{c_{1}}{2}e^{-2x} + \frac{x^{2}}{4} - \frac{x}{4} + c_{2} $

Since $y = ue^{x}$, the general solution is

$\displaystyle y = -\frac{c_{1}}{2}e^{-x} + c_{2}e^{x} + (\frac{x^{2}}{4} - \frac{x}{4})e^{x}\ensuremath{\ \blacksquare}$

Example 2..6   Using $L(x^{2}) \equiv 0$, Reduce the order of the following differential equation

$\displaystyle L(y)= y^{\prime\prime\prime} + 2x^{2}y^{\prime\prime} -3xy^{\prime} + 2y = 0 $

SOLUTION Let $y = ux^{2}$. Then $y^{\prime} = u^{\prime}x^{2} + 2ux$, $y^{\prime\prime} = u^{\prime\prime}x^{2} + 4u^{\prime}x + 2u,$ $y^{\prime\prime\prime} = u^{\prime\prime\prime}x^{2} + 6u^{\prime\prime}x + 6u^{\prime}$. Thus

$\displaystyle L(y) = L(ux^{2}) = x^{2}u^{\prime\prime\prime} + (2x^{4} + 6x)u^{\prime\prime} + (5x^{3} + 6)u^{\prime} = 0$

Now let $u^{\prime} = w$. Then

$\displaystyle x^{2}w^{\prime\prime} + (2x^{4} + 6x)w^{\prime} + (5x^{3} + 6)w = 0\ensuremath{\ \blacksquare}$



Subsections