DeMoivre's theorem and Euler's formula

Theorem 1..1   Euler's formula

$\displaystyle e^{i\theta} = \cos{\theta} + i \sin{\theta}$

Proof The MacLaurin expansion of $e^{x}, \sin{x}, \cos{x}$ are

$\displaystyle e^{x}$ $\displaystyle =$ $\displaystyle 1 + x + \frac{x^{2}}{2!} + \cdots = \sum_{n=0}^{\infty}\frac{x^{n}}{n!}$  
$\displaystyle \sin{x}$ $\displaystyle =$ $\displaystyle x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots = \sum_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}$  
$\displaystyle \cos{x}$ $\displaystyle =$ $\displaystyle 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots = \sum_{n=0}^{\infty}\frac{x^{2n}}{(2n)!}$  

For any real number $\theta$, we have
$\displaystyle e^{i\theta}$ $\displaystyle =$ $\displaystyle (1 + i\theta + \frac{i^{2}\theta^2}{2!} + \cdots$  
  $\displaystyle =$ $\displaystyle 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots) + i(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots)$  
  $\displaystyle =$ $\displaystyle \cos{\theta} + i\sin{\theta}$  

Properties

(1) $\overline{z_{1} \pm z_{2}} = \overline{z_{1}} \pm \overline{z_{2}},  \overline...
...}},  \overline{\frac{z_{1}}{z_{2}}} = \frac{\overline{z_{1}}}{\overline{z_[2}}$

(2) $\Re z = \frac{z + \overline{z}}{2},  \Im z = \frac{(z - \overline{z})}{2i}$

(3) $\vert z_{1}z_{2}\vert = \vert z_{1}\vert\vert z_{2}\vert,  \vert\frac{z_{1}}{z_{2}}\vert = \frac{\vert z_{1}\vert}{\vert z_{2}\vert}  (z_{2} \neq 0)$

(4) $\arg(z_{1}z_{2}) = \arg z_{1} + \arg z_{2},  \arg(\frac{z_{1}}{z_{2}}) = \arg z_{1} - \arg z_{2}$

(5) $\vert z\vert = \vert\overline{z}\vert,  z\overline{z} = \vert z\vert^{2},  \arg{z} = -\arg{z}$

(6) $\vert\vert z_{1}\vert - \vert z_{2}\vert\vert \leq \vert z_{1} \pm z_{2}\vert \leq \vert z_{1}\vert + \vert z_{2}\vert$

(7) $z = 0$ and $\vert z\vert = 0$ are equivalent ($\arg 0$ is undetermined)

(8) $(\cos{\theta} + i\sin{\theta})^{n} = \cos{n\theta} + i\sin{n\theta}  (n$is constant$)$ De Moivre's theorem (9) Binary equation$z^{n} = \alpha(= re^{i\theta})$has the following solutions

$\displaystyle z_{k} = \sqrt[n]{r}\left(\cos{\frac{\theta + 2k\pi}{n}} + i\sin{\frac{\theta + 2k\pi}{n}}\right)  (k = 0,1,2.\ldots,n-1)$

Exercise1.2
1. Prove De Moivre's theorem 2. Simplify the following complex numbers.
(a)
$\left(\frac{1 - i}{\sqrt{2}}\right)^{7}$
(b)
$(\sqrt{3} - i)^{6}$
(c)
$\frac{(1 + \sqrt{3}i)^{6}}{(-1 + i)^{10}}$

3. Solve the following equation.

(a)
$z^2 = i$
(b)
$z^3 = -1$
(c)
$z^4 = -1 + \sqrt{3}i$

4. Express the followings in the form of $x + iy$.

(a)
$e^{i\frac{3}{4}\pi}$
(b)
$e^{-i\frac{1}{6}\pi}$
(c)
$e^{2 + i\pi}$
(d)
$e^{2- i\frac{3}{2}\pi}$

5. Express the followings in the polar form $re^{i\theta}$.

(a)
$-2$
(b)
$i$
(c)
$1+i$
(d)
$\sqrt{3} - i$

(6) Show that $\vert z\vert = 1$ if and only if $z = e^{i\theta}$.