5.4 Improper integrals

1.

(a) $\displaystyle{\frac{\pi}{2}}$(b) 1(c) $\displaystyle{\frac{\pi^2}{16}}$(d) 1(e) $\pi$(f) $\displaystyle{\frac{\pi^2}{2}}$

2.

Let $\displaystyle{t = x^{\frac{1}{2}}}$. Then $\displaystyle{2tdt = dx}$.Thus,

$\displaystyle \Gamma(\frac{1}{2}) = \int_{0}^{\infty} x^{-\frac{1}{2}}e^{-x} dx = 2\int_{0}^{\infty} e^{-t^2} dt $

Let $\displaystyle{I = \int_{0}^{\infty} e^{-x^2} dx, I = \int_{0}^{\infty} e^{-y^2} dt}$. Then

$\displaystyle I^2 = \iint_{0}^{\infty} e^{-(x^2 + y^2)} dx dy $

Note that by 5.5 $\displaystyle{I^2 = \frac{\pi}{4}}$ より $\displaystyle{\Gamma(\frac{1}{2}) = \sqrt{\pi}}$