1.5 Sequences

1.

(a) $\infty$(b) 0(c) $-1$ (d) 1(e) 0

2.

For $a > 1$, $\sqrt[n]{a} > 1$. Thus let $\sqrt[n]{a} = 1 + h,  h > 0$. Then

$\displaystyle a = (1 + h)^{n} = 1 + nh + \cdots + h^n \geq 1 + nh $

Therefore

$\displaystyle \lim_{n \rightarrow \infty}h = \lim_{n \rightarrow \infty}\frac{a - 1}{n} = 0 $

For $a = 1$, $\sqrt[n]{a} = 1$ for all $n$. Thus

$\displaystyle \lim_{n \rightarrow \infty}\sqrt[n]{a} = 1 $

For $0 < a < 1$, let $\displaystyle{b = \frac{1}{a}}$. Then $b > 1$ and

$\displaystyle 1 = \lim_{n \rightarrow \infty}\sqrt[n]{b} = \lim_{n \rightarrow \infty}\frac{1}{\sqrt[n]{a}} $

3.

(a) a(b) 3