Triple Integrals

Let $T$ be a closed bounded region in $xyz$ space and the projection of $T$ onto $xy$-plane be $\Omega_{xy}$. Then $T$ is expressed as

$\displaystyle T = \{(x,y,z) : (x,y) \in \Omega_{xy}, \psi_{1}(x,y) \leq z \leq \psi_{2}(x,y) \} $

Thus,

$\displaystyle \iiint_{T}f(x,y,z)dxdydz = \iint_{\Omega_{xy}}\big(\int_{\psi_{1}(x,y)}^{\psi_{2}(x,y)}f(x,y,z)dz\big)dxdy $

Furthermore, if

$\displaystyle \Omega = \{(x,y) : a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x) \} $

then

$\displaystyle \iiint_{T}f(x,y,z)dxdydz = \int_{a}^{b}\left(\int_{\phi_{1}(x)}^{...
..._{2}(x)}\left(\int_{\psi_{1}(x,y)}^{\psi_{2}(x,y)}f(x,y,z)dz\right)dy\right)dx $

Understanding
In the triple integral, it is important to know which direction the small cuboid $\Delta x \Delta y \Delta z$ should be stacked. If the closed bounded region $T$ is bounded by the two surfaces $z = \phi_{1}(x,y)$ and $z = \phi_{2}(x,y)$, then it is better to stack the cuboid into the direction of $z$ and in this case, $\int_{\phi_{1}(x,y)}^{\phi_{2}(x,y)}f(x,y,z)dz$ is innermost integral. Note that $z = \phi_{1}(x,y)$ is the surface under the surface $z = \phi_{2}(x,y)$.

NOTE Consider a small rectangular solid $\Delta x \Delta y \Delta z$. Then as in figure5.11, fill the solid by piling up these small rectangular solid to the direction of $z$-axis.

Figure 5.23: Triple Integral
\includegraphics[width=5cm]{SOFTFIG-5/tripleintegral.eps}
Then the height of the long rectangular solid can be expressed by $\int_{\psi_1}^{\psi_2}dz = (\psi_{2} - \psi_1)$, the volume of the small long rectangular solid is $(\psi_{2} - \psi_1)\Delta x \Delta y$. Thus

$\displaystyle \iiint_{T}f(x,y,z)dxdydz = \iint_{\Omega_{xy}}[\int_{\psi_{1}(x,y)}^{\psi_{2}(x,y)}f(x,y,z)dz]dxdy.$

This way, a triple integral can be reduced a double integral.

Example 5..9   For $\displaystyle{T = \{(x,y,z) : 0 \leq x \leq y \leq z \leq 1 \}}$. evaluate the following triple integrals.

$\displaystyle \iiint_{T} dx dydz$

% latex2html id marker 29979
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-9.eps}

Pile up small rectangular solid int the direction of $z$, the lower surface is $z = y$ and the upper surface is $z = 1$.

SOLUTION The projection of $T = \{(x,y,z) : 0 \leq x \leq y \leq z \leq 1\}$ onto the $xy$-plane is the region $\Omega_{xy} = \{(x,y) : 0 \leq x \leq y \leq 1$. Now using vertical simple region, $\Omega_{xy} = \{(x,y) : 0 \leq x \leq 1,  x \leq y \leq 1\}.$ Its volume is given by

$\displaystyle V$ $\displaystyle =$ $\displaystyle \iint_{\Omega}\int_{z=y}^{1}dz dx dy = \int_{x=0}^{1}\int_{x}^{1} [z]_{y}^{1}dy dx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}\int_{x}^{1}(1 - y)dy dx = \int_{0}^{1}\left[y - \frac{y^2}{2}\right]_{x}^{1} dx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(1 - \frac{1}{2} - (x - \frac{x^2}{2})) dx = \left[\frac{x}{2} - \frac{x^2}{2} + \frac{x^3}{6}\right]_{0}^{1}$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} - \frac{1}{2} + \frac{1}{6} = \frac{1}{6}$  

Exercise 5..9   For $\displaystyle{T = \{(x,y,z) : 0 \leq x \leq y \leq z \leq 1 \}}$, evaluate the following triple integral.

$\displaystyle \iiint_{T} e^{x+y+z} dx dydz$

Figure 5.24: Exercise5-9
% latex2html id marker 30022
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-9.eps}

Exercise5-9
To evaluate $\int_{z=y}^{1}e^{x+y+z}dz$, the variables other that $z$ are treated as constant. $\int_{z=y}^{1}e^{x+y+z}dz = \left[e^{x+y+z}\right]_{z=y}^{1} = e^{x+y+1} - e^{x+2y}$

SOLUTION The projection of $T = \{(x,y,z) : 0 \leq x \leq y \leq z \leq 1\}$ onto $xy$-plane is the region $\Omega_{xy} = \{(x,y) : 0 \leq x \leq y \leq 1\}$. Using vertical simple region, $\Omega_{xy} = \{(x,y) : 0 \leq x \leq 1,  x \leq y \leq 1\}$. Thus

$\displaystyle V$ $\displaystyle =$ $\displaystyle \iint_{\Omega}\int_{z=y}^{1}e^{x+y+z}dz dx dy = \int_{x=0}^{1}\int_{x}^{1} [e^{x+y+z}]_{y}^{1}dy dx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}\int_{x}^{1}(e^{x+y+1} - e^{x+2y})dy dx$  
  $\displaystyle =$ $\displaystyle \int_0^1 \left[e^{x+y+1} - \frac{1}{2}e^{x+2y}\right]_x^1 dx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(e^{x+2} - \frac{1}{2}e^{x+2} - e^{2x+1} + \frac{1}{2}e^{3x})dx$  
  $\displaystyle =$ $\displaystyle \left[\frac{1}{2}e^{x+2} - \frac{1}{2}e^{2x+1} + \frac{1}{6}e^{3x}\right]_{0}^{1}$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}e^{3} - \frac{1}{2}e^{3} + \frac{1}{6}e^{3} - (\frac{1}{2}e^{2} - \frac{1}{2}e + \frac{1}{6})$  
  $\displaystyle =$ $\displaystyle \frac{1}{6}e^3 - \frac{1}{2}e^2 + \frac{1}{2}e - \frac{1}{6} = \frac{1}{6}(e - 1)^3$  

Theorem 5..6   The transformation $\Phi : \left\{\begin{array}{c}
x = \phi(u,v,w)\\
y = \psi(u,v,w)\\
z = \xi(u,v,w)
\end{array}\right. $ is one-to-one mapping of points in the close bounded region $T$ in $xyz$-space into points in the closed bounded region $T'$ in $uvw$-space. Suppose that $\phi,\psi,\xi$ are the class $C^1$ and

$\displaystyle J = J(u,v,w) = \left\vert\begin{array}{ccc}
x_{u}&x_{v}&x_{w}\\
y_{u}&y_{v}&y_{w}\\
z_{u}&z_{v}&z_{w}
\end{array}\right \vert \neq 0.$

If $f(x,y,z)$ is continuous on $T$, then
    $\displaystyle \iiint_{T}f(x,y,z)dxdydz$  
  $\displaystyle =$ $\displaystyle \iiint_{T^{\prime}}f(\phi(u,v,w),\psi(u,v,w),\xi(u,v,w))\vert J\vert dudvdw.$  

Determinant
Cofactor expansion of 1st row.
$\left\vert\begin{array}{ccc}
x_{u}&x_{v}&x_{w}\\
y_{u}&y_{v}&y_{w}\\
z_{u}&z_...
...rt + x_w\left\vert\begin{array}{cc} y_u & y_v\ z_u & z_v\end{array}\right\vert$

Corollary 5..1   Let $(x,y,z)$ be a point of the cylinder in the rectangular coordinates. Now express this by the cylindrical coordinates, $\left\{\begin{array}{c}
x = r\cos{\theta}
y = r\sin{\theta}
z = z
\end{array}\right. $

$\displaystyle J(r,\theta,z) = \left\vert\begin{array}{ccc}
\cos{\theta}& -r\sin...
...eta}&0\\
\sin{\theta}& r\cos{\theta} & 0\\
0&0&1
\end{array}\right \vert = r $

Thus

$\displaystyle \iiint_{T}f(x,y,z)dxdydz = \iiint_{T^{\prime}}f(r\cos{\theta},r\sin{\theta},z)dz\vert r\vert drd\theta $

Check
$J(r,\theta,z) = \left\vert\begin{array}{ccc}
\cos{\theta}& -r\sin{\theta}&0\\
...
... 0\\
0&0&1
\end{array}\right \vert = r\cos^{2}{\theta} + r\sin^{2}{\theta} = r$

Check
The projection of $(r,\theta,z)$ onto $xy$-plane is $x = r\cos{\theta}, y = r\sin{\theta}$.
Figure 5.25: Cylindrical Coordinates
\includegraphics[width=5.0cm]{SOFTFIG-5/cylindrical.eps}

Example 5..10   For $\displaystyle{T = \{(x,y,z) : x^2 + y^2 \leq 1, -\sqrt{1 - x^2 - y^2} \leq z \leq \sqrt{1 - x^2 - y^2}\}}$, evaluate the triple integral

$\displaystyle I = \iiint_{T} \frac{1}{\sqrt{1 - x^2 - y^2}} dxdydz $

% latex2html id marker 30139
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-10.eps}

SOLUTION In the cylindrical coordinates, a point $(r,\theta,z)$ is expressed by the distance $r$ from the origin , the angle $\theta$ from the polar axis , and $z$. Thus, by letting $x = r\cos{\theta}, y = r\sin{\theta}$, $x^2 + y^2 \leq 1$ is written as $r^2 \leq 1$. a circle with the radius 1. Thus, $\{(r,\theta): 0 \leq \theta \leq 2\pi, 0 \leq r \leq 1\}$ and $-\sqrt{1-x^2-y^2} = -\sqrt{1-r^2}$. From this, the region $T$ is mapped into the region

$\displaystyle T' = \{(r,\theta, z) : 0 \leq r \leq 1, 0 \leq \theta \leq 2\pi, - \sqrt{1 - r^2} \leq z \leq \sqrt{1 - r^2} \} $


$\displaystyle I$ $\displaystyle =$ $\displaystyle \iiint_{T'}\frac{1}{\sqrt{1 - r^2}} rdzdrd\theta = \int_{0}^{2\pi...
... \sqrt{1 - r^2}}^{\sqrt{1 - r^2}} \frac{r}{\sqrt{1 - r^2}}dz\big)dr\big)d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\big( \int_{0}^{1} \big[\frac{rz}{\sqrt{1 - r^2}}\...
... = 2\pi \cdot \left[r^{2} \right ]_{0}^{1} = 2\pi  \ensuremath{ \blacksquare}$  

Exercise 5..10   For $\displaystyle{T = \{(x,y,z) : x^2 + y^2 \leq a^2, 0 \leq z \leq x \}}$, evaluate the following triple integral.

$\displaystyle \iiint_{T} dx dydz$

Exercise5-10

% latex2html id marker 30182
\includegraphics[width=3.5cm]{SOFTFIG-5/enshu5-8.eps}

SOLUTION The region $T$ is enclosed by the cylinder $x^2 + y^2 \leq a^2$ and the surface $z = 0, z = x$. Use the cylindrical coordinate, $x = r\cos{\theta}, y = r\sin{\theta}, z = z$. Then

$\displaystyle T= \{(r,\theta,z) : -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},  0 \leq r \leq a, 0 \leq z \leq r\cos{\theta}\}$

Thus
$\displaystyle I$ $\displaystyle =$ $\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{0}^{a}\int_0^{r\cos{\t...
...i}{2}}^{\frac{\pi}{2}}\int_{0}^{a}\left[z\right]_0^{r\cos{\theta}} r dt d\theta$  
  $\displaystyle =$ $\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{0}^{a} r^2\cos{\theta}...
...\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos{\theta}d\theta )(\int_{0}^{a} r^2 dr)$  
  $\displaystyle =$ $\displaystyle 2\left[\sin{\theta}\right]_{0}^{\frac{\pi}{2}}\left[\frac{r^3}{3}\right]_{0}^{a} = \frac{2a^3}{3}\ensuremath{ \blacksquare}$  

Corollary 5..2   The first coordinate, $\rho$, is the distance from the origin to the point $(x,y,z)$. The second coordinate, $\phi$, is the angle measured from the positive $z$-axis. The third coordinate, $\theta$, is the angle measured from the $x$-axis. Then $\left\{\begin{array}{c}
x = \sin{\phi}\cos{\theta}
y = \rho\sin{\phi}\sin{\theta}
z = \rho\cos{\phi}
\end{array}\right . $ Jacobian is

$\displaystyle J(\rho,\phi,\theta) = \left\vert\begin{array}{ccc}
\sin{\phi}\cos...
...\\
\cos{\phi}&-\rho\sin{\phi}&0
\end{array}\right \vert = \rho^{2} \sin{\phi} $


    $\displaystyle \iiint_{T}f(x,y,z)dxdydz$  
  $\displaystyle =$ $\displaystyle \iiint_{T^{\prime}}f(\rho\sin{\phi}\cos{\theta},\rho\sin{\phi}\sin{\theta},\rho\cos{\phi})\rho^{2} \sin{\phi} d\rho d\phi d\theta$  

NOTE

Figure 5.26: Spherical coordinates
\includegraphics[width=4.6cm]{SOFTFIG-5/spherical.eps}

Example 5..11   For $\displaystyle{T = \{(x,y,z) : x^2 + y^2 + z^2 \leq 1\}}$, evaluate the following triple integral.

$\displaystyle I = \iiint_{T}\frac{dxdydz}{\sqrt{1 - x^2 - y^2 - z^2}} $

SOLUTION Note that the region $T$ is the sphere of the radius 1. Now use spherical coordinates to express $(\rho,\phi,\theta)$. The angle $\theta$ is measured from the $x$-axis, so to cover the sphere, $0 \leq \theta \leq 2\pi$. The angle $\phi$ is measured from the $z$-axis, so to cover the sphere, $0 \leq \phi \leq \pi$. The distance $\rho$ is measured from the origin, so to cover the sphere, $0 \leq \rho \leq 1$. Thus, the region $T$ is mapped into the region $T'$

$\displaystyle T' = \{(\rho,\phi,\theta) : 0 \leq \rho \leq 1, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2\pi \} $

Thus
$\displaystyle I$ $\displaystyle =$ $\displaystyle \iiint_{T'}\frac{\rho^{2} \sin{\phi}}{\sqrt{1 - \rho^2}} d\rho d\...
...{0}^{\pi} \sin{\phi} d\phi \int_{0}^{1} \frac{\rho^2}{\sqrt{1 - \rho^2}} d \rho$  

Now note that the integral with respect to $\rho$ is improper integral. So, we let $\rho = \sin{t}$. Then $d\rho = \cos{t}dt$ and \begin{displaymath}\begin{array}{l\vert lll}
\rho & 0 & \to & 1\ \hline
t & 0 & \to & \frac{\pi}{2}
\end{array}\end{displaymath}. Thus
$\displaystyle \int_0^1 \frac{\rho^2}{\sqrt{1 - \rho^2}}d\rho$ $\displaystyle =$ $\displaystyle \int_0^{\pi/2} \frac{\sin^2{t}\cos{t}}{\sqrt{ 1 - \sin^2{t}}}dt = \int_0^{\pi/2} \frac{\sin^2{t}\cos{t}}{\cos{t}}dt$  
  $\displaystyle =$ $\displaystyle \int_0^{\pi/2} \frac{1 - \cos{2t}}{2}dt = \frac{1}{2}\big[t - \frac{\sin{2t}}{2}\big]_0^{\pi/2} = \frac{\pi}{4}$  

Therefore,
$\displaystyle I$ $\displaystyle =$ $\displaystyle \frac{\pi}{4} \int_{0}^{2\pi}d\theta \int_{0}^{\pi} \sin{\phi} d\phi = \frac{\pi}{4} \cdot 2\pi \cdot 2 = \pi^2  \ensuremath{ \blacksquare}$  

Check
$\int_0^{\pi/2} \frac{\sin^2{t}\cos{t}}{\cos{t}}dt = \int_0^{\pi/2} \sin^2{t}\;dt$.

Exercise 5..11   For $\displaystyle{T = \{(x,y,z) : \frac{x^2}{2^2} + \frac{y^2}{3^2} + \frac{z^2}{4^2} \leq 1\}}$, evaluate the following triple integral.

$\displaystyle I = \iiint_{T}(x^2 + y^2 + z^2)\:dxdydz $

Exercise5-11

% latex2html id marker 30319
\includegraphics[width=4cm]{SOFTFIG-5/enshu5-11.eps}

SOLUTION

$\displaystyle T = \{(x,y,z) : \frac{x^2}{2^2} + \frac{y^2}{3^2} + \frac{z^2}{4^2} \leq 1\}$

is ellipsoid. To use spherical coordinates, we use the following change of variables. Let

$\displaystyle x = 2u,  y = 3v,  z = 4w$

Then the region $T$ is mapped into the region $T' = \{(u,v,w) : u^2 + v^2 + w^2 \leq 1\}$. Then the Jacobian is
$\displaystyle J(u,v,w)$ $\displaystyle =$ $\displaystyle \vert\frac{\partial(x,y,z)}{\partial(u,v,w)}\vert = \left\vert\be...
...left\vert\begin{array}{ccc}
2&0&0\\
0&3&0\\
0&0&4
\end{array}\right\vert = 24$  

Thus
$\displaystyle I$ $\displaystyle =$ $\displaystyle \iiint_{T}(x^2+y^2 + z^2)dxdydz = \iiint_{T'} (4 u^2 + 9 v^2 + 16 w^2)(24) dudvdw$  

Now we use spherical coordinates. By the transformation

$\displaystyle u = \rho \sin{\phi}\cos{\theta}, v = \rho \sin{\phi}\sin{\theta}, w = \rho \cos{\theta}$

$T'$ is mapped into $T''$.

$\displaystyle T'' = \{(\rho,\phi,\theta) : 0 \leq \rho \leq 1, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2\pi\}.$

Thus,
$\displaystyle I$ $\displaystyle =$ $\displaystyle 24\iiint_{T''}(4 u^2 + 9 v^2 + 16 w^2) dudvdw$  
  $\displaystyle =$ $\displaystyle 96\iiint_{T''}u^2 dudvdw + 216 \iiint_{T''}v^2 dudvdw + 384\iiint_{T''}w^2 dudvdw$  

Since $\vert J\vert = \rho^2 \sin{\phi}$,
$\displaystyle 96\iiint_{T''}u^2 dudvdw$ $\displaystyle =$ $\displaystyle 96\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{1}\rho^2 \sin^{2}{\phi}\cos^{2}{\theta}\vert J\vert d\rho d\phi d\theta$  
  $\displaystyle =$ $\displaystyle 96\int_{0}^{2\pi}\cos^{2}{\theta}d\theta\int_{0}^{\pi}\sin^{3}{\phi}d\phi\int_{0}^{1}\rho^4\:d\rho$  
  $\displaystyle =$ $\displaystyle 96\cdot\pi\cdot\frac{4}{3}\cdot\frac{1}{5} = \frac{4\cdot 96}{15}\pi = \frac{128}{5}\pi$  

Check
$\int_0^{\pi}\sin^{3}{\phi}\:d\phi = \int_0^\pi \sin^{2}{\phi} \sin{\phi}\:d\phi...
...hi = 2\int_0^1 (1 -t^2)\:dt = 2\left[t - \frac{t^3}{3}\right]_0^1 = \frac{4}{3}$


$\displaystyle 216\iiint_{T''}v^2 dudvdw$ $\displaystyle =$ $\displaystyle 216\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{1}\rho^2 \sin^{2}{\phi}\sin^{2}{\theta}\vert J\vert d\rho d\phi d\theta$  
  $\displaystyle =$ $\displaystyle 216\int_{0}^{2\pi}\sin^{2}{\theta}d\theta\int_{0}^{\pi}\sin^{3}{\phi}d\phi\int_{0}^{1}\rho^4\:d\rho$  
  $\displaystyle =$ $\displaystyle 216\cdot\pi\cdot\frac{4}{3}\cdot\frac{1}{5} = \frac{4\cdot 216}{15}\pi = \frac{288}{5}\pi$  

$\int_0^{2\pi}\sin^{2}{\theta}\:d\theta = \int_0^{2\pi}\frac{1 - \cos{2\theta}}{...
...theta = \frac{1}{2}\left[\theta - \frac{\sin{2\theta}}{2}\right]_0^{2\pi} = \pi$

$\int_0^{2\pi}\cos^{2}{\theta}\:d\theta = \int_0^{2\pi}\frac{1 + \cos{2\theta}}{...
...theta = \frac{1}{2}\left[\theta + \frac{\sin{2\theta}}{2}\right]_0^{2\pi} = \pi$


$\displaystyle 384\iiint_{T''}w^2 dudvdw$ $\displaystyle =$ $\displaystyle 384\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{1}\rho^2 \cos^{2}{\theta}\vert J\vert d\rho d\phi d\theta$  
  $\displaystyle =$ $\displaystyle 384\int_{0}^{2\pi}\sin{\theta}\cos^{2}{\theta}d\theta\int_0^\pi \sin{\phi}d\phi \int_{0}^{1}\rho^4\:d\rho$  
  $\displaystyle =$ $\displaystyle 384\cdot \pi\cdot 2 \cdot \frac{1}{5} = \frac{768}{5}\pi.$  

Therefore,

$\displaystyle I = (\frac{128}{5} + \frac{288}{5} + \frac{768}{5})\pi = \frac{1184}{5}\pi \ensuremath{ \blacksquare}$

Suppose the density $\sigma = f(x,y,z)$. Then the mass $m$ of the solid $T$ is given by

$\displaystyle m = \iiint_{T}f(x,y,z)dxdydz $

Especially when the density $\sigma = f(x,y,z) = 1$,

$\displaystyle \iiint_{T} dx dydz$

We can think of this as the volume of $T$.

Example 5..12   Find the volume of the tetorahedoron in the figure.

SOLUTION To evaluate the triple integral, first find the projection of $T$ onto $xy$-plane. The projection $\Omega_{xy}$ is the triangle region bounded by $x= 0, y= 0, y\leq 1-x$. Now expressing by vertically simple region.

$\displaystyle \Omega_{xy} = \{(x,y) : 0 \leq x \leq 1, 0 \leq y \leq 1-x \} $

Thus

$\displaystyle T = \{(x,y,z) : 0 \leq x \leq 1, 0 \leq y \leq 1-x, 0 \leq z \leq 1-x-y \} $

% latex2html id marker 30447
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-12.eps}

$\Omega_{xy}$
If we know a surface is given by $z = 1- x -y$, then by letting $z = 0$, we can find $\Omega_{xy} = \{(x,y): x+y=1\}$.


$\displaystyle V$ $\displaystyle =$ $\displaystyle \iint_{\Omega_{xy}}[\int_{0}^{1-x-y}dz]dxdy = \int_{0}^{1}\int_{0}^{1-x}(1-x-y)dydx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1} \left[(1-x)y - \frac{y^2}{2}\right ]_{0}^{1-x} dx = \int_{0}^{1}\frac{(1-x)^{2}}{2}dx$  
  $\displaystyle =$ $\displaystyle - \left[\frac{(1-x)^{3}}{6}\right ]_{0}^{1} = \frac{1}{6}$  

$ \blacksquare$

In this question, the volume is simply given by the base area $\times$ the height $\div$ 3. Thus $\displaystyle{\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}}$ .

Exercise 5..12   In Example5.11, when the density is given by $\sigma(x,y,z) = xy$, find the mass.

SOLUTION

$\displaystyle m = \iiint_{T}xydxdydz = \int_{0}^{1}\int_{0}^{1-x}\int_{0}^{1-x-y}xy dzdydx $

Now

$\displaystyle \int_{0}^{1-x-y}xydz = xy(1-x-y) = x(1-x)y - xy^2 $

Then
$\displaystyle \int_{0}^{1-x}\int_{0}^{1-x-y}xydzdy$ $\displaystyle =$ $\displaystyle \int_{0}^{1-x}(x(1-x)y - xy^2)dy$  
  $\displaystyle =$ $\displaystyle \left[\frac{1}{2}x(1-x)y^2 - \frac{1}{3}xy^3\right ]_{0}^{1-x} = \frac{1}{6}x(1-x)^{3}$  

Thus
$\displaystyle m$ $\displaystyle =$ $\displaystyle \int_{0}^{1}\frac{1}{6}x(1-x)^{3}dx = \frac{1}{6}\int_{0}^{1}(x-3x^2 + 3x^3 - x^4)dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{6}\left[\frac{1}{2}x^2 - x^3 + \frac{3}{4}x^4 -\frac{1}{5}x^5\right ]_{0}^{1} = \frac{1}{120}
\ensuremath{ \blacksquare}$  

Check
$\int_{0}^{1-x-y}xydz = xy\int_0^{1-x-y}dz = xy\left[z\right]_0^{1-x-y} = xy(1-x-y)$

consider the system of $n$ particles, ${\rm P}_{1}, {\rm P}_{2}, \ldots, {\rm P}_{n}$. Now the cartesian coordinates of ${\rm P}_{i}$ is ${\rm P}_{i}(x_{i},y_{i})$ and the mass of the particle ${\rm P}_{i}$ is $m_{i}$. Now draw a line perpendicular to the $x$-axis so that the rotation moment is equal. Thus

$\displaystyle \sum_{i=1}^{n}m_{i}(x_{i} - \bar x) = 0 $

or

$\displaystyle \bar x = \frac{\sum_{i=1}^{n}m_{i}x_{i}}{\sum_{i=1}^{n}m_{i}} $

Similarly,

$\displaystyle \bar y = \frac{\sum_{i=1}^{n}m_{i}y_{i}}{\sum_{i=1}^{n}m_{i}} $

The point $(\bar x, \bar y)$ is called centroid of a system of particles.

Figure 5.27: Centroid of a system of particles
\includegraphics[width=6cm]{SOFTFIG-5/centroid.eps}

If every point ${\rm P}(x,y)$ in the closed bounded region $\Omega$ is given a density $\sigma(x,y)$, we partition $\Omega$ into $\Delta : \Omega_{1},\Omega_{2},\ldots,\Omega_{n}$ and select an arbitrary point ${\rm P}_{i}(x_{i},y_{i})$ in $\Omega_{i}$. Consider the centroid $(x_{\Delta},y_{\Delta})$ of particles ${\rm P}_{1}, {\rm P}_{2}, \ldots, {\rm P}_{n}$.

Let the area of $\Omega_{i}$ be $\Delta S_{i}$. Then

$\displaystyle x_{\Delta} = \frac{\sum_{i=1}^{n}\sigma({\rm P}_{i})x_{i}\Delta S...
...({\rm P}_{i})y_{i}\Delta S_{i}}{\sum_{i=1}^{n}\sigma({\rm P}_{i})\Delta S_{i}} $

Now by letting $\vert\Delta\vert \rightarrow 0$, $x_{\Delta},y_{\Delta}$ converge to $\bar x, \bar y$. Thus,

$\displaystyle \bar x = \frac{1}{m}\iint_{\Omega}\sigma(x,y)xdxdy,   \bar y = \frac{1}{M}\iint_{\Omega}\sigma(x,y)ydxdy $

where $m = \iint_{\Omega}\sigma(x,y)dxdy $ represents mass.

If the density $\sigma = \rho(x,y,z)$ is given to each point in the closed region $T$, we can find $(\bar x, \bar y, \bar z)$ as follows.

$\displaystyle \bar x = \frac{1}{m}\iiint_{T}\rho(x,y,z)xdxdydz,   \bar y = \frac{1}{m}\iiint_{T}\rho(x,y,z)ydxdydz $

$\displaystyle \bar z = \frac{1}{m}\iiint_{T}\rho(x,y,z)zdxdydz,   m = \iiint_{T}\rho(x,y,z)dxdydz $

Example 5..13   Find the centroid of the figure below if the density at each point is $\sigma(x,y,z) = xy$.

% latex2html id marker 30591
\includegraphics[width=5cm]{SOFTFIG-5/reidai5-12.eps}

SOLUTION

$\displaystyle \bar x$ $\displaystyle =$ $\displaystyle \frac{1}{m}\iiint_{T}xyxdxdydz$  
  $\displaystyle =$ $\displaystyle \frac{1}{m}\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{1-x-y}x^2 ydzdydx$  
  $\displaystyle =$ $\displaystyle \frac{1}{m}\int_{0}^{1}\int_{0}^{1-x}x^{2}y(1-x-y)dydx$  
  $\displaystyle =$ $\displaystyle \frac{1}{m}\int_{0}^{1}\left[(\frac{x^{2}(1-x)y^{2}}{2} - \frac{x^{2}y^{3}}{3})\right ]_{0}^{1-x}dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{m}\int_{0}^{1}\frac{x^{2}(1-x)^{3}}{6} dx = \frac{1}{6m}\int_{0}^{1}(x^{2} - 3x^{3} + 3x^{4} - x^{5}) dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{6m}\left[\frac{x^{3}}{3} - \frac{3x^{4}}{4} + \frac{3x^{5}}{5} - \frac{x^{6}}{6} \right ]_{0}^{1} = \frac{1}{360m}$  

Since by Exercise5.12, $\displaystyle{m = \frac{1}{120}}$. Thus, $\displaystyle{\bar x = \frac{1}{3}}$.

We next find $\bar{y}$. Interchange $x$ and $y$, we get the same figure. Thus $\bar y = \frac{1}{3}$. Similarly, $\bar z = \frac{1}{6}$ $ \blacksquare$

Check
$\int_{0}^{1-x-y}x^2 ydz = \left[x^2y z\right]_0^{1-x-y} = x^2 y(1-x-y)$

Check
$\left[\frac{x^{2}(1-x)y^{2}}{2} - \frac{x^{2}y^{3}}{3}\right]_0^{1-x} = \frac{3...
...rac{x^2(1-x)^3}{6} = \frac{x^2(1-3x+3x^2-x^3)}{6} = \frac{x^2-3x^3+3x^4-x^5}{6}$

Exercise 5..13   Find the centroid of the right cone with the radius $a$ and the height $h$ if the density at each point is constant.

Exercise5-13

\includegraphics[width=3.5cm]{SOFTFIG-5/cone.eps}

SOLUTION By symmetry, $\bar{x} = \bar{y} = 0$. So we only need to find $\bar{z}$.

$\displaystyle \bar{z} = \frac{1}{V}\iiint_{T}z dx dy dz $

$V = \frac{1}{3}\pi a^2 h$. Note that the triangle with the base $a$ and the height $h$ and the triangle with the base $r$ and the height $k$ is similar. Thus,

$\displaystyle \frac{h}{a} = \frac{k}{r}$

and $k = \frac{hr}{a}$. Therefore,

$\displaystyle T' = \{(r.\theta,z) : 0 \leq r \leq a, 0 \leq \theta \leq 2\pi, \frac{hr}{a} \leq z \leq h\}$

Check

% latex2html id marker 30671
\includegraphics[width=2.5cm]{SOFTFIG-5/enshu5-13.eps}

Thus

$\displaystyle \iiint_{T'}z\vert J\vert dz dr d\theta$ $\displaystyle =$ $\displaystyle \iiint_{T'}zrdz dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi} \int_{0}^{a} \int_{\frac{hr}{a}}^{h}z dz rdr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\int_{0}^{a}\left[\frac{z^2}{2}\right]_{\frac{hr}{a}}^{h} r dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\int_{0}^{a}\frac{1}{2}(h^2 - \frac{h^2 r^2}{a^2})r dr d\theta$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\int_{0}^{2\pi}d\theta\int_{0}^{a}(h^2 r - \frac{h^2 r^3}{a^2})dr$  
  $\displaystyle =$ $\displaystyle \pi\left[\frac{h^2 r^2}{2} - \frac{h^2 r^4}{4a^2}\right]_{0}^{a} = \pi (\frac{h^2 a^2}{2} - \frac{h^2 a^4}{4a^2})$  
  $\displaystyle =$ $\displaystyle \frac{\pi h^2 a^2}{4}.$  

Therefore,

$\displaystyle \bar{z} = \frac{\pi h^2 a^2}{4} \cdot \frac{3}{\pi a^2 h} = \frac{3h}{4}\ensuremath{ \blacksquare}$

Let $\sigma = \sigma(x,y,z)$ be the density at each point $(x,y,z)$ of region. Then the moment of inertia of $R$ about $x$-axis, $y$-axis, $z$-axis is give by the following.

$\displaystyle I_x$ $\displaystyle =$ $\displaystyle \iiint_R \sigma (y^2 + z^2)dxdydz\hskip 0.5cm I_y = \iiint_R \sigma(x^2 + z^2)dxdydz$  
$\displaystyle I_z$ $\displaystyle =$ $\displaystyle \iiint_R \sigma (x^2 + y^2)dxdydz$  

Exercise A


1.
Evaluate the following triple integrals.

(a) $\displaystyle{\int_{0}^{a}\int_{0}^{b}\int_{0}^{c} dxdydz}$ (b) $\displaystyle{\int_{0}^{1}\int_{0}^{x}\int_{0}^{y} ydzdydx}$

2.
Express the followings using triple integrals.

(a) The mass of the ball $x^{2} + y^{2} + z^{2} \leq r^{2}$ provided the density is proportional to the distance from the origin.

(b) The mass of the cone $z = 1$ and $z = \sqrt{x^{2} + y^{2}}$ provided that the density is proportional to the distance from the origin.

(c) The volume common to $z = 4 - x^{2} - y^{2}$ and $z = 2 + y^{2}$

3.
Find the center of mass of the following closed region bounded by the following curves.

(a) $y = x$ and $\displaystyle{y = x^2}$ provided the density is constant. (b) $x^{2} = 4y$ and $\displaystyle{x - 2y + 4 = 0}$.

(c) $y = x^{2} - 2x$ and $\displaystyle{y = 6x - x^{2}}$.

Exercise B


1.
Evaluate the following triple integrals for $\displaystyle{T = \{(x,y,z) : 0 \leq x \leq y \leq z \leq 1 \}}$

(a) $\displaystyle{\iiint_{T} dx dydz}$ (b) $\displaystyle{\iiint_{T}e^{x+y+z} dxdydz }$

2.
Evaluate the following triple integrals..

(a) $\displaystyle{\iiint_{T} dx dydz,  T = \{(x,y,z):\sqrt{x^2 + y^2} \leq z \leq 3 \}}$

(b) $\displaystyle{\iiint_{T}(x^2 + y^2 + z^2) dxdydz, T = \{(x,y,z):\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1\} }$

3.
Find the center of mass of the following region.

(a) $y = x$ and $\displaystyle{y = 6x - x^2}$

(b) Semishpher $\displaystyle{x^2 + y^2 + z^2 \leq a^2, z \geq 0}$ provided the density is proportional to the distanace from the origin.

(c) The right circular cone with the bottom radius $a$ and the hight $h$

(d) $\displaystyle{ax \leq x^2 + y^2 \leq a^2}$

(e) Find the center $\bar y, \bar z$ of the trapezoid given in Example 5.13

(f) $\displaystyle{ax \leq x^2 + y^2 \leq a^2}$ provided the density is proportional to the distance from the origin.