Change of Variables

Theorem 5..4   By the one-to-one correspondence $\Phi(u,v) = (\phi(u,v), \psi(u,v))$, the region $\Gamma$ is mapped into $\Omega$. Furthermore, $\phi(u,v),\psi(u,v)$ are the class $C^{1}$ with respect to $u,v$. Now suppose that Jacobian of $x,y$ with respect to $u,v$

$\displaystyle J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \det\begin{pmatrix}
\phi_{u}(u,v)&\phi_{v}(u,v)\\
\psi_{u}(u,v)&\psi_{v}(u,v)
\end{pmatrix} $

is never be 0 on $\Gamma$. Then the following is true for the continuous function $f(x,y)$ on $\Omega$.

$\displaystyle \iint_{\Omega}f(x,y)dxdy = \iint_{\Gamma}f(\phi(u,v),\psi(u,v))\vert J(u,v)\vert dudv $

Determinant
$\det\begin{pmatrix}
\phi_{u}(u,v)&\phi_{v}(u,v)\\
\psi_{u}(u,v)&\psi_{v}(u,v)
\end{pmatrix} = \phi_{u}(u,v)\psi_v(u,v) - \phi_v(u,v)\psi_u(u,v)$
is the determinant of the matrix. Jacobian $J$ can be negative.

NOTE Let $\Omega$ be the region on $xy$-plane and $\Gamma$ be the region on $uv$-plane. Suppose that $\Phi$ is a map from $\Gamma$ to $\Omega$ satisfying

$\displaystyle x$ $\displaystyle =$ $\displaystyle \phi(u,v) = 2u$  
$\displaystyle y$ $\displaystyle =$ $\displaystyle \psi(u,v) = 2v$  

Then

$\displaystyle \binom{x}{y} = \left(\begin{array}{cc}
2 & 0\\
0 & 2
\end{array} \right)\binom{u}{v} = \Phi\binom{u}{v} $

and $\Phi$ is invertible matrix. Thus there exists the inverse of $\Phi$ such that

$\displaystyle \binom{u}{v} = \Phi^{-1}\binom{x}{y} = \frac{1}{4}\left(\begin{array}{cc}
2 & 0\\
0 & 2
\end{array} \right)\binom{x}{y}. $

Invertible Matrix
A matrix $A$ is called invertible matrix if there exists a matrix $X$ such that $AX = XA = E$. Write $X = A^{-1}$.
Inverse Matrix
$A = \begin{pmatrix}a & b\ d & d\end{pmatrix}$, $A^{-1} = \frac{1}{ad-bc}\begin{pmatrix}d & -b\ -c & a\end{pmatrix}$

Consider the rectangle with 4 vertices $(x,y), (x+\Delta x, y), (x, y + \Delta y), (x + \Delta x, y + \Delta y)$.

Figure 5.14: $\Phi ^{-1}$
\includegraphics[width = 9cm]{SOFTFIG-5/hensuhenkan.eps}
Then the area of the rectangle is $\Delta x \Delta y$. Now correspondence area of $uv$-plane is given by $\displaystyle{\binom{u}{v} = \Phi^{-1}\binom{x}{y}}$

\begin{displaymath}\begin{array}{l}
(x,y) \to (\frac{x}{2},\frac{y}{2}) = (u,v)\...
...c{y + \Delta y}{2}) = (u + \Delta u, v + \Delta v)
\end{array} \end{displaymath}

Thus the area $\Delta u \Delta v$ of $uv$-plane is
$\displaystyle \Delta u \Delta v$ $\displaystyle =$ $\displaystyle (u + \Delta u - u)(v + \Delta v - v)$  
  $\displaystyle =$ $\displaystyle \left(\frac{x + \Delta x}{2} - \frac{x}{2}\right) \left(\frac{y + \Delta y}{2} - \frac{y}{2} \right) = \frac{1}{4} \Delta x \Delta y$  

Thus

$\displaystyle \Delta x \Delta y = 4 \Delta u \Delta v = \vert\phi_u \psi_v - \phi_v \psi_u\vert\Delta u \Delta v = \vert J(u,v)\vert \Delta u \Delta v. $

This $J(u,v)$ is the jacobian.

Jacobian
If $x = \phi(u,v) = 2u, y = \psi(u,v) = 2v$, then the jacobian $J(u,v)$ is $J(u,v) = \frac{1}{4} = \left\vert\begin{array}{cc}2&0\ 0&2\end{array}\right\vert$. This is the same as $\left\vert\begin{array}{cc}\phi_u& \phi_v\\
\psi_u & \psi_v
\end{array}\right\vert$. Thus the absolute value of jacobian is the ratio of area of the $dxdy$ and $dudv$.

Theorem 5..5   To transform the polar coordinate $(r,\theta)$ to the rectangular coordinate $(x,y)$, since $x = r\cos{\theta}, y = r\sin{\theta}$,

$\displaystyle J(r,\theta) = \left\vert\begin{array}{cc}
\frac{\partial x}{\part...
...s{\theta}
\end{array}\right \vert = r(\cos^{2}{\theta} + \sin^{2}{\theta}) = r $

Thus

$\displaystyle \iint_{\Omega}f(x,y)dxdy = \iint_{\Gamma}f(r\cos{\theta},r\sin{\theta})r dr d\theta $

Example 5..4   Evaluate the following double integrals.
1. $\displaystyle{\iint_{\Omega}xydxdy,  \Omega = \{(x,y): x^2 + y^2 \leq 1, x,y \geq 0\}}$
2. $\displaystyle{\iint_{\Omega}\frac{1}{x^2 + y^2}\:dxdy,  \Omega = \{(x,y): 1 \leq x^2 + y^2 \leq 4, y \geq 0\}}$
3. $\displaystyle{\iint_{\Omega}(x-y)^2dxdy,  \Omega = \{(x,y):\vert x+2y\vert \leq 1, \vert x-y\vert \leq1\}}$

SOLUTION 1. $\Omega$ is a circular region. Thus using polar coordinate, $x = r\cos{\theta}, y = r\sin{\theta}$. Then $0 \leq x^2 + y^2 = r^2 \leq 1$ and $0 \leq r \leq 1$. Also, $x = r\cos{\theta} \geq 0, y = r\sin{\theta} \geq 0$ and $\displaystyle{0 \leq \theta \leq \frac{\pi}{2}}$.

Figure 5.15: Example5-4-1
% latex2html id marker 28875
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-4-1-1.eps}

Figure 5.16: Example5-4-1-2
% latex2html id marker 28879
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-4-1-2.eps}

Thus $\Omega$ is transformed to

$\displaystyle \Gamma = \{(r,\theta) :  0 \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq 1 \} $

Then by Theorem5.5,

$\displaystyle \iint_{\Omega}xydxdy$ $\displaystyle =$ $\displaystyle \iint_{\Gamma}\underbrace{r\cos{\theta}}_{x}\underbrace{r\sin{\theta}}_{y}rdrd{\theta} = \iint_{\Gamma}r^3\cos{\theta}\sin{\theta}drd{\theta}$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\frac{\pi}{2}}\sin{\theta}\cos{\theta}d{\theta}\int_{0}...
...t \left[\frac{r^4}{4}\right ]_{0}^{1} = \frac{1}{8}
\ensuremath{ \blacksquare}$  

Figure 5.17: Example5-4-2
% latex2html id marker 28898
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-4-2-1.eps}

2. $\Omega$ is a washer region. Then by letting $x = r\cos{\theta}, y = r\sin{\theta}$, we have $1 \leq x^2 + y^2 \leq 4$ and $1 \leq r^2 \leq4$. Here since $r > 0$, $1 \leq r \leq 2$. Also since $y = r\sin{\theta} \geq 0$, $0 \leq \theta \leq \pi$. Thus $\Omega$ is transformed into

$\displaystyle \Gamma = \{(r,\theta) : 0 \leq \theta \leq \pi,  1 \leq r \leq 2\}$


$\displaystyle \iint_{\Omega} \frac{1}{x^2 + y^2} dxdy$ $\displaystyle =$ $\displaystyle \iint_{\Gamma}\frac{1}{r^2} \vert J(r,\theta)\vert dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\pi}\int_{1}^{2}\frac{1}{r^2} r dr d\theta = \int_{0}^{\pi}\int_{1}^{2}\frac{1}{r} dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\pi} d\theta [\log{r}]_{1}^{2} = \pi \log{2} \ensuremath{ \blacksquare}$  

% latex2html id marker 28937
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-4-3-1_gr1.eps}

% latex2html id marker 28938
\includegraphics[width=3.5cm]{SOFTFIG-5/reidai5-4-3-2_gr1.eps}

3. This double integral can be evaluated directly. But using the transformation of variables is easier.
Let $\left\{\begin{array}{l}
x + 2y = u\\
x -y = v
\end{array}\right.$. Then solve for $x,y$ to get $\left\{\begin{array}{l}
x = \frac{u+2v}{3}
y = \frac{u-v}{3}
\end{array}\right.$ Substitute this into the condition of $\Omega$. Then the point of $\Gamma = \{(u,v): \vert u\vert \leq 1, \vert v\vert \leq 1\}$ corresponds one-to-one into point in $\Omega$. Now

$\displaystyle J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \det\begin{pmatrix}1/3 & 2/3\ 1/3 & -1/3\end{pmatrix} = -\frac{1}{3}$

Thus,
$\displaystyle \iint_{\Omega}(x-y)^2 dx dy$ $\displaystyle =$ $\displaystyle \iint_{\Gamma}v^2 \vert J(u,v)\vert dudv$  
  $\displaystyle =$ $\displaystyle \int_{-1}^1 du \int_{-1}^1 \frac{v^2}{3}dv = [u]_{-1}^{1}\left[\frac{v^3}{9}\right]_{-1}^{1}$  
  $\displaystyle =$ $\displaystyle 2(\frac{2}{9}) = \frac{4}{9}\ensuremath{ \blacksquare}$  

Exercise 5..4   Evaluate the following double integrals.
1. $\displaystyle{\iint_{\Omega}\sqrt{1 - x^2 - y^2}dxdy, \Omega = \{(x,y) : x^2 + y^2 \leq x\}}$
2. $\displaystyle{\iint_{\Omega}e^{(y-x)/(y+x)}dxdy, \Omega = \{(x,y) : x+y \leq 1, x \geq 0, y \geq 0\}}$

SOLUTION 1. $\Omega$ is a circlular region . Thus use the polar coordinate $x = r\cos{\theta}, y = r\sin{\theta}$. Since $0 \leq x^2 + y^2 = r^2 \leq r\cos{\theta}$, $r^2 \leq r\cos{\theta}$ and $r\cos{\theta} \geq 0$. Now $r\cos{\theta} \geq 0$ implies $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Since $0 \leq r^2 \leq r\cos{\theta}$, $0 \leq r \leq \cos{\theta}$. Thus, $\Omega$ is transformed into

$\displaystyle \Gamma = \{(r,\theta) : -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq \cos{\theta} \}$

Then
$\displaystyle \iint_{\Omega}\sqrt{1 - x^2 - y^2}dxdy$ $\displaystyle =$ $\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{0}^{\cos{\theta}}\sqrt{1 - r^2}rdrd{\theta}$  

Let $t = 1-r^2$. Then $dt = -2r\:dr$, \begin{displaymath}\begin{array}{c\vert ccl}
r & 0 & \to & \cos{\theta}\ \hline
t & 1 & \to & 1-\cos^{2}{\theta} = \sin^{2}{\theta}
\end{array}\end{displaymath}. Thus,
$\displaystyle \int_{0}^{\cos{\theta}}\sqrt{1 - r^2}rdr$ $\displaystyle =$ $\displaystyle -\frac{1}{2}\int_1^{\sin^{2}{\theta}}t^{\frac{1}{2}}\:dt = -\frac{1}{2}\cdot\frac{2}{3}\left[t^{3/2}\right]_1^{\sin^{2}{\theta}}$  
  $\displaystyle =$ $\displaystyle -\frac{1}{3}(\sin^{3}{\theta} - 1) = \frac{1}{3}(1 - \sin^{3}{\theta})$  

Figure 5.18: Check
% latex2html id marker 29023
\includegraphics[width=3.5cm]{SOFTFIG-5/enshu5-4-1_gr1.eps}

$\int_{0}^{\frac{\pi}{2}}\sin^{3}{\theta}\:d\theta = \frac{2!!}{3!!} = \frac{2}{3}$

Exercise5-4-2
% latex2html id marker 29029
\includegraphics[width=3.5cm]{SOFTFIG-5/enshu5-4-2-1.eps}
% latex2html id marker 29030
\includegraphics[width=3.5cm]{SOFTFIG-5/enshu5-4-2-2.eps}

$\left\{\begin{array}{ll}
&\vert J(u,v)\vert = \vert\frac{\partial(x,y)}{\parti...
...ight\vert \vert\\
&= \vert-\frac{1}{2}\vert = \frac{1}{2}
\end{array}\right.$

Thus,

$\displaystyle \iint_{\Omega}\sqrt{1 - x^2 - y^2}dxdy$ $\displaystyle =$ $\displaystyle \frac{1}{3}\int_{0}^{\frac{\pi}{2}}(1- \sin^{3}{\theta})d{\theta} = \frac{1}{3}(\frac{\pi}{2}-\frac{2}{3}) \ensuremath{ \blacksquare}$  

2. Let $u = x + y, v = y-x$. Then check to see where the region $\Omega = \{(x,y) : x+y \leq1, x \geq 0, y \geq 0 \}$ map into.
Since $u = x, v = -x$, the line $y = 0$ maps to $u = -v$.
Since $u = y, v = y$, the line $x = 0$ maps to $v = u$
A line $x + y = 1$ maps to $u = x+y = 1$
$\Omega$ is mapped to

$\displaystyle \Gamma = \{(u,v) : 0 \leq u \leq1, - u \leq v \leq u\}$

Thus
$\displaystyle I$ $\displaystyle =$ $\displaystyle \iint_{\Omega} e^{(y-x)/(y+x)} dxdy = \iint_{\Gamma} e^{v/u} \vert J(u,v)\vert du dv$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\int_{0}^{1}\int_{u}^{u}e^{v/u}dvdu = \frac{1}{2}\int_{0}^{1}[ue^{v/u}]_{-u}^{u} du$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\int_{0}^{1}(ue - ue^{-1})du = \frac{1}{2}[\frac{u^2 e...
...frac{u^2}{2e}]_{0}^{1} = \frac{1}{4}(e-\frac{1}{e}) \ensuremath{ \blacksquare}$  

Exercise A


1.
Evaluate the following double integralsD

(a) $\displaystyle{\iint_{\Omega}(x^2+y^{2})dxdy,  \Omega = \{(x,y) : x^2 + y^2 \leq 4\}}$

(b) $\displaystyle{\iint_{\Omega}\frac{1}{(x^2+y^2)}dxdy,  \Omega = \{(x,y) : 1 \leq x^2 + y^2 \leq 4, y \geq 0\}}$

(c) $\displaystyle{\iint_{\Omega}y^{2}dxdy,  \Omega = \{(x,y) : x^{2} + y^{2} \leq 1 \}}$

(d) $\displaystyle{\iint_{\Omega}(x+y)dxdy, \Omega = \{(x,y): 0 \leq x+y \leq 1, \vert x-y\vert \leq 1}$

(e) $\displaystyle{\iint_{\Omega}\sqrt{4 - x^{2} - y^{2}}dxdy,  \Omega = \{(x,y) : x^{2} + y^{2} \leq 2x \}}$

2.
Draw the graph of the region $\Gamma$ which is the image of $\Omega = \{(x,y): 0 \leq x + y \leq 1, 0 \leq x - y \leq 1\}$ by the transformation $u = x - y, v = x + y$DThen using this transformation, evaluate $\iint_{\Omega}(2x + 3y)dxdy$D
3.
Evaluate $\iint_{\Omega}2xdxdy$, where $\Omega = \{(x,y): 0 \leq x - y \leq 1, 0 \leq x + 2y \leq 1\}$.

Exercise B


1.
Evaluate the following double integralsD

(a) $\displaystyle{\iint_{\Omega}x^{2}dxdy,  \Omega = \{(x,y) : x^2 + y^2 \leq 4\}}$

(b) $\displaystyle{\iint_{\Omega}\log{(x^2+y^2)}dxdy,  \Omega = \{(x,y) : 1 \leq x^2 + y^2 \leq 4\}}$

(c) $\displaystyle{\iint_{\Omega}e^{(y-x)/(y+x)}dxdy, \Omega = \{(x,y) : x+y \leq 1, x \geq 0, y \geq 0\}}$

(d) $\displaystyle{\iint_{\Omega}e^{x^2 + y^2}dxdy,  \Omega = \{(x,y) : 1 < x^2 + y^2 < 4 \}}$

(e) $\displaystyle{\iint_{\Omega}\sqrt{1 - x^2 - y^2}dxdy,  \Omega = \{(x,y) : x^2 + y^2 \leq 1 \}}$

(f) $\displaystyle{\iint_{\Omega}(1 - x - 2y)dxdy,  \Omega = \{(x,y) : x \geq 0, y \geq 0, x^2 + y^2 \leq 1 \}}$

2.
Using the tranformation $u = x + y, v = x - y$, evaluate the following double integral.

$\displaystyle{\iint_{\Omega}(x^2 + y^2) e^{-x+y} dx dy,  \Omega = \{-1 \leq x+y \leq 1, -1 \leq x - y \leq 1 \}}$