Integration by Parts

Integration by Parts

Theorem 3..5   Let $f(x),g(x)$ be differentiable functions. Then.

$\displaystyle \int f(x)g^{\prime}(x) = f(x)g(x) - \int f^{\prime}(x)g(x)dx $

Understanding If you can not integrate by substitution, then use integration by parts.

NOTE $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$. Then $f(x)g'(x) = (f(x)g(x))' - f'(x)g(x)$. Now integrate both sides with respect $x$.

$\displaystyle \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx. $

If $f(x)g'(x)dx$ is hard to integrate, Rewrite by parts to get integration of $\int f(x)g'(x)dx$.

Example 3..4   Integrate the following function by parts.
1. $\displaystyle{\int \log{x} dx}$ 2. $\displaystyle{\int \sin^{-1}{x}dx}$

Integration by Parts If integrand contains a function such as $\sin{x},\cos{x},e^{\pm x}$, then let $g'(x)$ be one of these functions.

The integrand does not contain $\sin{x}, \cos{x}, e^x$, let $f(x) = \log{x}$. SOLUTION 1. $\left\{\begin{array}{lcl}
f(x) = \log{x} & & g'(x) = 1\\
&\searrow& \\
f'(x) = \frac{1}{x} &\leftarrow& g(x) = \int dx = x
\end{array}\right.$
Thus

When you use the integration by parts to get $g(x)$ from $g'(x)$, you can ignore the constant.

$\displaystyle \int \underbrace{\log{x}}_{f} \underbrace{1}_{g'}dx$ $\displaystyle =$ $\displaystyle \underbrace{x}_{g} \underbrace{\log{x}}_{f} - \int \underbrace{x}_{g} \underbrace{\frac{1}{x}}_{f'} dx$  
  $\displaystyle =$ $\displaystyle x \log{x} - x + c\ensuremath{ \blacksquare}$  

The integrand does not contain $\sin{x},\cos{x},e^{\pm x}$. Let $f(x) = \sin^{-1}{x}$. 2. $\left\{\begin{array}{lcl}
f(x) = \sin^{-1}{x} & & g'(x) = dx\\
&\searrow& \\...
...x) = \frac{1}{\sqrt{1-x^2}} &\leftarrow& g(x) = \int dx = x
\end{array}\right.$
Thus

$\displaystyle \int \underbrace{\sin^{-1}{x}}_{f}\underbrace{dx}_{g'} = \underbr...
...}}_{f} - \int \underbrace{x}_{g} \underbrace{\frac{1}{\sqrt{1-x^{2}}}dx}_{f'}. $

Now let $t = 1 - x^2$. Then

Check
$\frac{\rm 1st degree poly}{\sqrt{\rm 2nd degree poly}}$.
Let $t =$ 2nd degree poly $dt = -2x dx$. Thus
$\displaystyle \int \frac{x}{\sqrt{1-x^{2}}}dx$ $\displaystyle =$ $\displaystyle -\int \frac{dt/2}{\sqrt{t}} = -\frac{1}{2}\int t^{-1/2} dt$  
  $\displaystyle =$ $\displaystyle - \frac{1}{2}2. t^{\frac{1}{2}} = - t^{1/2} + c = - \sqrt{1 - x^2} + c.$  

Thus,

$\displaystyle \int \sin^{-1}{x} dx = x\sin^{-1}{x} + \sqrt{1 - x^{2}} + c\ensuremath{ \blacksquare}$

Exercise 3..4   Integrate the following functions.
1. $\displaystyle{\int x e^{-x} dx}$ 2. $\displaystyle{\int x\log{x}\:dx}$ 3. $\displaystyle{\int e^{x}\sin{x}dx}$

Integrand contains one of $\sin{x},\cos{x},e^{\pm x}$, let $g'(x) = e^{-x}$.

SOLUTION 1. $\left\{\begin{array}{lcl}
f(x) = x & & g'(x) = e^{-x}\\
&\searrow& \\
f'(x) = 1 &\leftarrow& g(x) = \int e^{-x}dx = -e^{-x}
\end{array}\right.$

Thus,

$\displaystyle \int xe^{-x}$ $\displaystyle =$ $\displaystyle -xe^{-x} - \int -e^{-x}\: dx$  
  $\displaystyle =$ $\displaystyle -xe^{-x} -e^{-x} + c\ensuremath{ \blacksquare}$  

2. $\left\{\begin{array}{lcl}
f(x) = \log{x} & & g'(x) = x\\
&\searrow& \\
f'(x) = \frac{1}{x} &\leftarrow& g(x) = \int xdx = \frac{x^2}{2}
\end{array}\right.$

Thus,

$\displaystyle \int x\log{x}$ $\displaystyle =$ $\displaystyle \frac{1}{2}x^2 \log{x} - \int \frac{1}{x}\cdot \frac{x^2}{2}\: dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}x^2 \log{x} - \int \frac{x}{2}\: dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}x^2 \log{x} - \frac{x^2}{4} + c\ensuremath{ \blacksquare}$  

Integtand does not contain one of $\sin{x},\cos{x},e^{\pm x}$. Let $f(x) = \log{x}$.

3. Integrand contains two of $\sin{x},\cos{x},e^{\pm x}$. Let $I$ be the antiderivative.

$\displaystyle I$ $\displaystyle =$ $\displaystyle \int e^{x}\sin{x}\:dx \hskip 1cm \left(\begin{array}{lcl}
f_1 = e...
... \\
f_1' = e^x &\leftarrow& g_1 = \int \sin{x}dx = -\cos{x}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle -e^{x} \cos{x} + \int e^{x} \cos{x}\:dx$  

Now the integral of the second tern is very similar to the original integral $I$. So, we integrate again. .
Check
Once you set $f(x)$. Then use $f(x)$ again.


$\displaystyle I$ $\displaystyle =$ $\displaystyle -e^{x} \cos{x} + \int e^{x} \cos{x}\:dx \left(\begin{array}{lcl}
...
...s{x}\\
&\searrow& \\
f_2' = e^x &\leftarrow& g_2 = \sin{x}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle -e^{x}\cos{x} + e^{x}\sin{x} - \int e^x \sin{x}\:dx$  
  $\displaystyle =$ $\displaystyle e^{x}(\sin{x} - \cos{x}) - I.$  

Then,

$\displaystyle 2I = e^{x}(\sin{x} - \cos{x}).$

Thus,

$\displaystyle I = \frac{1}{2}e^{x}(\sin{x} - \cos{x})\ensuremath{ \blacksquare}$

Exercise A

1.
Work out the following integrals

(a) $\displaystyle{\int{xe^{x}} dx}$ (b) $\displaystyle{\int{x\sin{x}} dx}$ (c) $\displaystyle{\int{xe^{2x}} dx}$ (d) $\displaystyle{\int{x^{2}e^{x}} dx}$

(e) $\displaystyle{\int{x^{2}\sin{x}} dx}$ (f) $\displaystyle{\int{x^{5}e^{x^{3}}} dx}$ (g) $\displaystyle{\int{x\cos{x}} dx}$

Exercise B

1.
Work out the following integrals

(a) $\displaystyle{\int{x\log{x}} dx}$ (b) $\displaystyle{\int{x^2e^{-x}} dx}$ (c) $\displaystyle{\int{(\log{x})^2} dx}$

(d) $\displaystyle{\int{x(x+5)^{14}} dx}$ (e) $\displaystyle{\int{x^{2}\cos{x}} dx}$ (f) $\displaystyle{\int{e^{x}\sin{x}} dx}$

(g) $\displaystyle{\int{\log{(1+x^2)}} dx}$ (h) $\displaystyle{\int{x\tan^{-1}{x}} dx}$ (i) $\displaystyle{\int{x^n\log{x}} dx}$ (n is integer)

(j) $\displaystyle{\int{x^3\sin{x}} dx}$ (k) $\displaystyle{\int{x\sinh{x}} dx}$