Evaluating Definite Integral

u-substitution

Theorem 3..11   If $x = \phi(u)$ is differentiable on the open interval $[a,b]$ and $f(x)$ is continuous on the closed interval $[\phi(a), \phi(b)]$, then

$\displaystyle \int_{\phi(a)}^{\phi(b)}f(x)dx = \int_{a}^{b}f(\{\phi(t)\}\phi^{\prime}(t))dt $

NOTE Let $x = \phi(u)$. Then $dx = \phi'(u)du$. Now the limit of intervals must be changed from $x = \phi(a)$ to $u = a$ and $x = \phi(b)$ to $u = b$.

\begin{displaymath}\begin{array}{l\vert lll}
x & \phi(a) & \to & \phi(b)\\ \hline
t & a & \to & b
\end{array}\end{displaymath}.

Integration by Parts
Let $f(x),g(x)$ be differentiable on the closed interval $[a,b]$. Then

$\displaystyle \int_{a}^{b} f(x)g'(x) = \left[f(x)g(x)\right]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx $

Example 3..16   Evaluate the following integrals.
1. $\displaystyle{\int_{0}^{1}3x^{2}(x^{3}+1)^{4}dx}$ 2. $\displaystyle{\int_{0}^{1}xe^{x}\ dx}$

SOLUTION 1. Let $t = x^3 + 1$. Then $dt = 3x^2 dx$. Thus we can express the integrand as $t^4$. Furthermore, the limit of integration becomes \begin{displaymath}\begin{array}{c\vert ccc}
x & 0 & \to & 1\\ \hline
t & 1 & \to & 2
\end{array}\end{displaymath}.
Thus, $\displaystyle{\int_{0}^{1}3x^{2}(x^{3}+1)^{4}dx = \int_{1}^{2}t^4 dt = \left[\f...
... \right ]_{1}^{2} = \frac{32 - 1}{5} = \frac{31}{5}}\ensuremath{\ \blacksquare}$

2. $\left\{\begin{array}{ccc}
f = x && g = e^x\\
&\searrow&\\
f' = 1 &\leftarrow& g' = e^x
\end{array}\right.$ Then

$\displaystyle \int_{0}^{1}xe^x dx = [xe^x]_{0}^{1} - \int_{0}^{1}e^x dx = e - [e^x]_{0}^{1} = e - (e - 1) = 1.$

Exercise 3..16   Evaluate the following definite integrals.

$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{1+\cos{x}}}dx$

Let . Then, and . . Now need to express by . , . Thus, SOLUTION$\displaystyle{u = \sqrt{1+\cos{x}}}$$\displaystyle{u^2 = 1+\cos{x}}$$\displaystyle{2udu = -\sin{x}dx}$$\displaystyle{dx = -\frac{2udu}{\sin{x}}}$$\sin{x}$$t$$\displaystyle{u = \sqrt{1+\cos{x}}}$$\displaystyle{\cos{x} = u^2 -1}$

$\displaystyle \sin{x} = \sqrt{1 - \cos^{2}{x}} = \sqrt{1- (t^2 -1)^2} = \sqrt{t^2(2 - t^2)}.$

For , . . Thus, $t > 0$$\sin{x} = t\sqrt{2-t^2}$\begin{displaymath}\begin{array}{c\vert ccc}
x & 0 \to \frac{\pi}{2}\\ \hline
t & \sqrt{2} \to 1
\end{array}\end{displaymath}$\displaystyle{dx = -\frac{2tdt}{\sin{x}} = -\frac{2tdt}{t\sqrt{2-t^2}}}$

$\displaystyle \int_{0}^{1}\frac{1}{\sqrt{1+\cos{x}}}dx = -2\int_{\sqrt{2}}^{1}\frac{1}{t\sqrt{2-t^2}}dt = 2\int_{1}^{\sqrt{2}}\frac{1}{t\sqrt{2-t^2}}dt.$

This integral is in the form , , , . Since the limit of integral is , $a^2 - x^2$$\displaystyle{t = \sqrt{2}\sin{\theta}}$$\displaystyle{dt = \sqrt{2}\cos{\theta}d\theta}$$\displaystyle{\sqrt{2-t^2} = \sqrt{2}\cos{\theta}}$\begin{displaymath}\begin{array}{c\vert cccc}
t & 1 & \to & \sqrt{2}\\ \hline
\theta & \frac{\pi}{4} & \to & \frac{\pi}{2}
\end{array}\end{displaymath}

$\displaystyle \int_{1}^{\sqrt{2}}\frac{1}{t\sqrt{2-t^2}}dt = 2\int_{\frac{\pi}{...
...ta = \sqrt{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{1}{\sin{\theta}}d\theta.$

By trigonometric integration[1]2. multiply both numerator and denominator by , $\sin{\theta}$
$\displaystyle \sqrt{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{1}{\sin{\theta}}d\theta$$\displaystyle =$$\displaystyle \sqrt{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\sin{\theta}}{\...
...int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\sin{\theta}}{1-\cos^2{\theta}}d\theta$
 

Now let . Then , . Thus, $u = \cos{\theta}$$du = -\sin{\theta}d\theta$\begin{displaymath}\begin{array}{c\vert ccc}
\theta & \frac{\pi}{4} & \to \frac{\pi}{2}\\ \hline
u & \frac{\sqrt{2}}{2} & \to & 0
\end{array}\end{displaymath}
$\displaystyle \sqrt{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\sin{\theta}}{1-\cos^2{\theta}}d\theta$$\displaystyle =$$\displaystyle \sqrt{2}\int_{\frac{\sqrt{2}}{2}}^{0}\frac{-1}{1-u^2}\;du = \sqrt{2}\int_{0}^{\frac{\sqrt{2}}{2}}\frac{1}{1-u^2}\; du$$\displaystyle =$$\displaystyle \frac{\sqrt{2}}{2}\left[\log\vert\frac{1+u}{1-u}\vert\right]_{0}^...
...1 + \frac{\sqrt{2}}{2}}{1 - \frac{\sqrt{2}}{2}}\vert\ensuremath{\ \blacksquare}$
 
   

Alternative Solution$1 + \cos{x} = 2\sin^{2}{\frac{x}{2}}$
$\displaystyle \int_0^{\frac{\pi}{2}}\frac{1}{\sqrt{1 + \cos{x}}}\:dx$$\displaystyle =$$\displaystyle \int_0^{\frac{\pi}{2}}\frac{1}{\sqrt{2}\cos{\frac{x}{2}}}\:dx = \...
...rt{2}}\int_0^{\frac{\pi}{2}}\frac{\cos{\frac{x}{2}}}{\cos^{2}{\frac{x}{2}}}\:dx$$\displaystyle =$$\displaystyle \frac{1}{\sqrt{2}}\int_0^{\frac{\pi}{2}}\frac{\cos{\frac{x}{2}}}{...
...rac{x}{2}}}\:dx = \frac{1}{\sqrt{2}}\int_0^{\frac{\sqrt{2}}{2}}\frac{dt}{1-t^2}$$\displaystyle =$$\displaystyle \frac{\sqrt{2}}{2}\left[\log\vert\frac{1+t}{1-t}\vert\right]_0^{\...
...1 + \frac{\sqrt{2}}{2}}{1 - \frac{\sqrt{2}}{2}}\vert\ensuremath{\ \blacksquare}$
 
   
   

Properties of Definite Integral Suppose that is continuous on the limit of integration. 1. If is even function, then $f(x)$
$f(x)$$\displaystyle{\int_{-a}^{a}f(x)dx = 2\int_{0}^{a}f(x)dx}$

2. If is odd function, then

$f(x)$$\displaystyle{\int_{-a}^{a}f(x)dx = 0}$

3.

$\displaystyle{\int_{0}^{\frac{\pi}{2}}f(\cos{x})dx = \int_{0}^{\frac{\pi}{2}}f(\sin{x})dx}$

where

$4. \ \displaystyle{I_{n} = \int_{0}^{\frac{\pi}{2}}\sin^{n}{x}dx = \int_{0}^{\f...
...2} & n\ \mbox{even} \\
\frac{(n-1)!!}{n!!} & n\ \mbox{odd}
\end{array}\right.}$
$\displaystyle{n!! = \left\{\begin{array}{ll}
n\cdot(n-2)\cdot(n-4)\cdots4\cdot2...
...even}\\
n\cdot(n-2)\cdot(n-4)\cdots3\cdot1 & n\ \mbox{odd}
\end{array}\right.}$

Example ..317   Show the properties of definite integral1,3,4 .

1. . Now is even function and . Thus, SOLUTION$\int_{-a}^{a}f(x)dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a}f(x) dx $$f(x)$$f(x) = f(-x)$

$\displaystyle \int_{-a}^{a}f(x)dx = \int_{-a}^{0}f(-x)dx + \int_{0}^{a}f(x) dx. $

Here let . Then . . . Thus, $t = -x$$dt = - dx$\begin{displaymath}\begin{array}{c\vert ccc}
x & -a &\to & 0\\ \hline
t & a &\to &0
\end{array}\end{displaymath}$\int_{-a}^{0}f(-x)dx = -\int_{a}^{0}f(t)dt = \int_{0}^{a}f(t) dt$

$\displaystyle \int_{-a}^{a}f(x)dx = 2 \int_{0}^{a}f(x) dx\ensuremath{\ \blacksquare}$

3. Let . Then , , $t = \cos{x}$$dt = -\sin{x}dx = -\sqrt{1 - t^2}dx$\begin{displaymath}\begin{array}{c\vert ccc}
x & 0 & \to & \frac{\pi}{2}\\ \hline
t & 1 & \to & 0
\end{array}\end{displaymath}

$\displaystyle \int_0^\frac{\pi}{2}f(\cos{x})dx = \int_1^0 f(t)(-\frac{1}{\sqrt{1-t^2}})dt = \int_0^1 \frac{f(t)}{\sqrt{1-t^2}}dt . $

Note the insdie of the square root is the difference of two squares. Thus and . Also, , , . Thus, $t = \sin{u},\ (0 \leq t \leq 1)$$dt = \cos{u}du$$u = \sin^{-1}{t}$$du = \frac{1}{\sqrt{1-t^2}}\:dt$\begin{displaymath}\begin{array}{c\vert ccc}
t & 0 & \to & 1\\ \hline
u & 0 & \to & \frac{\pi}{2}
\end{array}\end{displaymath}

$\displaystyle \int_0^\frac{\pi}{2}f(\cos{x})dx = \int_0^1 \frac{f(t)}{\sqrt{1-t^2}}dt = \int_0^\frac{\pi}{2}f(\sin{u})du.$

Finally, $\int_0^\frac{\pi}{2}f(\sin{u})du = \int_0^\frac{\pi}{2}f(\sin{x})dx$

$\displaystyle \int_0^\frac{\pi}{2}f(\cos{x})dx = \int_0^\frac{\pi}{2}f(\sin{x})dx\ensuremath{\ \blacksquare}$

4. By 3. . We show . For , $\int_{0}^{\pi/2}\sin^{n}{x}dx = \int_{0}^{\pi/2}\cos^{n}{x}dx$$\int_{0}^{\pi/2}\sin^{n}{x}dx$
$n \geq 2$
$\displaystyle I_{n}$$\displaystyle =$$\displaystyle \int_{0}^{\frac{\pi}{2}}\sin^{n-1}{x}\sin{x}dx = -\left[\sin^{n-1}{x}\cos{x}\right]_{0}^{\frac{\pi}{2}}$    $\displaystyle +$$\displaystyle (n-1)\int_{0}^{\frac{\pi}{2}}\sin^{n-2}{x}\cos^{2}{x}dx$  
Note that . Thus . Now we take care of the rest. $\sin{0} = 0, \cos(\frac{\pi}{2}) = 0$$\left[\sin^{n-1}{x}\cos{x}\right]_{0}^{\frac{\pi}{2}} = 0$
$\displaystyle (n-1)\int_{0}^{\frac{\pi}{2}}\sin^{n-2}{x}\cos^{2}{x}dx$$\displaystyle =$$\displaystyle (n-1)\int_{0}^{\frac{\pi}{2}}\sin^{n-2}{x}(1-\sin^{2}{x})dx$    $\displaystyle =$$\displaystyle (n-1)(I_{n-2} - I_{n}).$  
Then we have the recurrence ralation . Note , $\displaystyle{I_{n} = \frac{n-1}{n}I_{n-2}}$$I_{0} = \int_{0}^{\frac{\pi}{2}}dx = \frac{\pi}{2}, \ \ I_{1} = \int_{0}^{\frac{\pi}{2}}\sin{x}dx = 1$
$\displaystyle I_{n}$$\displaystyle =$$\displaystyle \frac{I_{n}}{I_{n-2}}\frac{I_{n-2}}{I_{n-4}}\cdots\frac{I_{2}}{I_{0}}I_{0}$    $\displaystyle =$$\displaystyle \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{1}{2} \frac{\pi}{2} = \frac{(n-1)!!}{n!!}\frac{\pi}{2},\ n {\rm even}$   $\displaystyle I_{n}$$\displaystyle =$$\displaystyle \frac{I_{n}}{I_{n-2}}\frac{I_{n-2}}{I_{n-4}}\cdots\frac{I_{3}}{I_{1}}I_{1}$    $\displaystyle =$$\displaystyle \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{2}{3} = \frac{(n-1)!!}{n!!}, \ n {\rm odd}\ \ensuremath{\ \blacksquare}$  

Exercise ..317   Evaluate the following integral.

$\displaystyle \int_{0}^{2}\sqrt{4-x^2}\ dx$

The inside of square root is of the form . Let and , , . Thus SOLUTION$a^2 - x^2$$x = 2\sin{t}$$t = \sin^{-1}{\frac{x}{2}}$$dx = 2\cos{t}dt, x^2 = 4\sin^2{t}, \sqrt{4-x^2} = 2\cos{t}$\begin{displaymath}\begin{array}{c\vert ccc}
x & 0 \to & 2\\ \hline
t & 0 \to & \frac{\pi}{2}
\end{array}\end{displaymath}


$\displaystyle \int_{0}^{2}\sqrt{4-x^2}\ dx$$\displaystyle =$$\displaystyle \int_0^\frac{\pi}{2}2\cos{t}(2\cos{t})dt = 4\int_0^\frac{\pi}{2}\cos^2{t}dt$    $\displaystyle =$$\displaystyle 4 \frac{1!!}{2!!}\frac{\pi}{2} = \pi\ensuremath{\ \blacksquare}$  

Exercise A


1.
Evaluate the following integrals?D

(a)$\displaystyle{\int_{-2}^{2}\sin{x}\ dx}$(b)$\displaystyle{\int_{-1}^{1}
\sin^{3}{x}\ dx}$(c)$\displaystyle{\int_{0}^{\frac{\pi}{2}}\sin^3{x}dx}$(d)$\displaystyle{\int_{0}^{\pi}\cos{2x} dx}$

(e)$\displaystyle{\int_{-1}^{1}\sqrt{x+1}dx}$

Exercise B


1.
Evaluate the following integrals?D

(a)$\displaystyle{\int_{0}^{\frac{\pi}{2}}\cos^{4}{x}\sin{x}dx}$(b)$\displaystyle{\int_{0}^{\frac{\pi}{2}}\frac{\sin{x}}{\sqrt{1+\cos{x}}} dx}$(c)$\displaystyle{\int_{0}^{\frac{\pi}{2}}\sin^{4}{x}dx}$

(n ????)

(d)$\displaystyle{\int_{-1}^{1}x^2 \cos{x} dx}$(e)$\displaystyle{\int_{0}^{\pi}\cos{nx}dx}$(f)$\displaystyle{\int_{0}^{1}\frac{x^{2}}{\sqrt{4-x^{2}}}\;dx}$

(g)$\displaystyle{\int_{0}^{1}xe^{x}\ dx}$

2.
Show that ?D
$\displaystyle{\int_{0}^{\frac{\pi}{2}}\sin^{n}{x}dx = \int_{0}^{\frac{\pi}{2}}\cos^{n}{x}dx}$

3.
Let be a continuous function on the interval . Then answer the following question concerning the function ?D
$f(x)$$(-\infty,\infty)$$\displaystyle{F(x) = \int_{-x}^{x}f(t)dt}$

Show that is an odd function?D

(a)$F(x)$

Show that is even function implies that is an odd function.

(b)$f(x)$$f'(x)$

Show that implies that ?D

(c)$f(x) = \int_{-x}^{x}f(t)dt$$f(x) = 0$

Show that can be represented by a sum and a difference of functions?D

(d)$f(x)$




next up previous contents index
Next:Improper Integral Up:Integration Previous:Definite Integrals Contents Index