Integration of Trigonometric Functions

Integration of Trigonometric Functions[I]

$\displaystyle \int \sin^{m}{x}\cos^{n}{x}\: dx.$

1. For $m = 1$. Let $t = \cos{x}$. Then $dt = -\sin{x}$ and

$\displaystyle \int \sin^{m}{x}\cos^{n}{x}\: dx = \int \cos^{n}{x}\sin{x}dx = \int t^n (-dt) = -\int t^n \:dt$

For $n=1$. Let $t = \sin{x}$. Then $dt = \cos{x}$ and

$\displaystyle \int \sin^{m}{x}\cos^{n}{x}\: dx = \int \sin^{m}{x}\cos{x}dx = \int t^m dt. $

Example 3..8   Integrate the following function.

$\displaystyle \sin^{3}{x}\cos{x} $

.

SOLUTION Let $t = \sin{x}$. Thne $dt = \cos{x}dx$,

$\displaystyle \int \sin^{3}{x}\cos{x}\: dx = \int t^3 dt = \frac{t^4}{4} + c = \frac{\sin^{4}{x}}{4} + c\ensuremath{\ \blacksquare}$

Exercise 3..8   Integrate the following function.

$\displaystyle \sin{x}\cos^{4}{x}$

SOLUTION Let $t = \cos{x}$. Then $dt = -\sin{x}dx$.

$\displaystyle \int \sin{x}\cos^{4}{x}\: dx = \int t^4 (-dt) = -\frac{t^5}{5} + c = -\frac{\cos^{5}{x}}{5} + c\ensuremath{\ \blacksquare}$

Integration of Trigonometric Functions[I]

$\displaystyle \int \sin^{m}{x}\cos^{n}{x}\: dx.$

2. If $m$ is odd, then $m-1$ is even. Using $\sin^{2}{x} = 1 - \cos^{2}{x}$, express $\sin^{m-1}{x}$ as in the form of $\cos{x}$. Thus,

$\displaystyle \int \sin^{m-1}{x}\cos^{n}{x}\sin{x}\:dx = \int (1 - \cos^{2}{x})^{\frac{m-1}{2}}\cos^{n}{x}\sin{x}dx.$

Now let $t = \cos{x}$. Then $dt = -\sin{x}dx$ and
$\displaystyle \int (1 - \cos^{2}{x})^{\frac{m-1}{2}}\cos^{n}{x}\sin{x}dx$ $\displaystyle =$ $\displaystyle \int (1 - t^2)^{\frac{m-1}{2}}t^n (-dt)$  

Similarly for $n$ odd.

Example 3..9   Integrate the following function.

$\displaystyle \sin^{3}{x}\cos^{2}{x} $

Since is odd power of , SOLUTION$\sin^{3}{x}$$\sin{x}$

$\displaystyle \int \sin^{3}{x}\cos^{2}{x}\:dx = \int (1 - \cos^{2}{x})\cos^{2}{x}\sin{x}\:dx$

Now let . Then and $t = \cos{x}$$dt = -\sin{x}dx$
$\displaystyle \int (1 - \cos^{2}{x})\cos^{2}{x}\sin{x}\:dx$ $\displaystyle =$ $\displaystyle \int (1 - t^2)t^2 (-dt) = -\int (t^2 - t^4)dt$  
  $\displaystyle =$ $\displaystyle -\left(\frac{t^{3}}{3} - \frac{t^{5}}{5}\right) + c = -\frac{\cos^{3}{x}}{3} + \frac{\cos^{5}{x}}{5} + c\ensuremath{\ \blacksquare}$  

  Integrate the following function .
Exercise ..39$\displaystyle{\sin^{3}{x}\cos^{3}{x} }$

Let . Then and SOLUTION$t = \sin{x}$$dt = \cos{x}dx$
$\displaystyle \int \sin^{3}{x}\cos^{3}{x} dx$$\displaystyle =$$\displaystyle \int \sin^{3}{x}\cos^{2}{x}\cos{x} dx$          $\displaystyle =$$\displaystyle \int \sin^{3}{x}(1 - \sin^{2}{x})\cos{x} dx$    $\displaystyle =$$\displaystyle \int t^{3}(1 - t^{2})dt = \int (t^3 - t^5)dt$    $\displaystyle =$$\displaystyle \frac{t^{4}}{4} - \frac{t^{6}}{6} + c = \frac{\sin^{4}{x}}{4} - \frac{\sin^{6}{x}}{6} + c\ensuremath{\ \blacksquare}$  

Integration of Trigonometric Function[I] 3. Suppose that and are both even. Now let . Then we can express by using . Consider the right triangle with the adjacent of the angle is 1 and the opposite is . Then and Also, Thus

$\displaystyle \int \sin^{m}{x}\cos^{n}{x}\: dx.$

$m$$n$$t = \tan{x}$$\sin^{2}{x}, \cos^{2}{x}, dx$$t$$x$$t$$t = \tan{x}$

$\displaystyle \cos^{2}{x} = (\cos{x})^2 = (\frac{1}{\sqrt{1+t^2}})^2 = \frac{1}{1+t^2},$

$\displaystyle \sin^{2}{x} = (\sin{x})^2 = (\frac{t}{\sqrt{1+t^2}})^2 = \frac{t^2}{1+t^2}.$

$\displaystyle dt = \frac{1}{\cos^{2}{x}}dx = \frac{1}{\frac{1}{t^2+1}}dx = (t^2 + 1)dx$

$\displaystyle dx = \frac{dt}{t^2 + 1}.$

  Find the following indefinite integrals. 1. 2.
Example ..310
$\displaystyle{\sin^{2}{x}\cos^{2}{x}}$$\displaystyle{\frac{\sin^{2}{x}}{\cos^{4}{x}} }$

1. Instead of using , it is easier to use double angle formula. SOLUTION$t = \tan{x}$

$\displaystyle \sin^{2}{x} = \frac{1 - \cos{2x}}{2},\ \cos^{2}{x} = \frac{1 + \cos{2x}}{2}$


$\displaystyle \int \sin^{2}{x}\cos^{2}{x}\:dx$$\displaystyle =$$\displaystyle \int \frac{(1-\cos{2x})(1+\cos{2x})}{4}\:dx$    $\displaystyle =$$\displaystyle \int \frac{1-\cos^{2}{2x}}{4}\:dx$    $\displaystyle =$$\displaystyle \frac{1}{4}\left(\int 1 - \frac{1 + \cos{4x}}{2}\right)\:dx = \fr...
...{4}\left(x - \frac{x}{2} - \frac{\sin{4x}}{8}\right)\ensuremath{\ \blacksquare}$  

2. Let . Then , , . Thus $t = \tan{x}$$\cos^{2}{x} = \frac{1}{1+t^2}$$\sin^{2}{x} = \frac{t^2}{1+t^2}$$dx = \frac{1}{t^2 + 1}dt$
$\displaystyle \int \frac{\sin^{2}{x}}{\cos^{4}{x}}dx$$\displaystyle =$$\displaystyle \int \frac{t^2}{1+t^2}(1+t^2)^2 \frac{1}{t^2 + 1}dt = \int t^2dt = \frac{t^3}{3} + c$    $\displaystyle =$$\displaystyle \frac{1}{3}\tan^{3}{x} + c$  

  Integrate the following function. 1. 2.
Exercise ..310
$\tan^{2}{x}$$\displaystyle{\frac{1}{\cos{x}}}$

SOLUTION

1. Let and express . Then $t = \tan{x}$$\tan{x} = \frac{\sin{x}}{\cos{x}}$

$\displaystyle dx = \frac{1}{1 + t^{2}} dt\hskip 0.5cm \cos^{2}{x} = \frac{1}{1+t^2}\hskip 0.5cm \sin^{2}{x} = \frac{t^2}{1+t^2}.$

Thus
$\displaystyle \int \tan^{2}{x} dx$$\displaystyle =$$\displaystyle \int \frac{\frac{t^2}{1+t^2}}{\frac{1}{1+t^2}}\cdot \frac{1}{1+t^2}dt = \int \frac{t^{2}}{1 + t^2} dt$    $\displaystyle =$$\displaystyle \int \frac{1 + t^{2} - 1}{1+ t^{2}} dt = \int [1 - \frac{1}{1+ t^2}] dt$    $\displaystyle =$$\displaystyle t - \tan^{-1}{t} + c = \tan{x} - x + c$  
Alternative Solution
$\displaystyle \int \tan^{2}{x} dx$$\displaystyle =$$\displaystyle \int \frac{\sin^{2}{x}}{\cos^{2}{x}} dx = \int \frac{1 - \cos^{2}{x}}{\cos^{2}{x}} dx$    $\displaystyle =$$\displaystyle \int (\sec^{2}{x} - 1) dx = \tan{x} - x + c
\ensuremath{\ \blacksquare}$  

2. . Then it is in the form of [1]-2. $\displaystyle{\frac{1}{\cos{x}} = \frac{\cos{x}}{\cos^{2}{x}} = \frac{\cos{x}}{1-\sin^{2}{x}}}$
$\displaystyle \int \frac{1}{\cos{x}}\:dx$$\displaystyle =$$\displaystyle \int \frac{\cos{x}}{1-\sin^{2}{x}}\:dx$  
Now, and $t = \sin{x}$$dt = \cos{x}dx$
$\displaystyle \int \frac{1}{\cos{x}}\:dx$$\displaystyle =$$\displaystyle \int \frac{dt}{1-t^2} = \int \frac{1}{(1+t)(1-t)}dt.$  
Using partial fraction decomposition,

$\displaystyle \frac{1}{(1+t)(1-t)} = \frac{A}{1+t} + \frac{B}{1-t}.$

Clear the denominator,

$\displaystyle 1 = A(1-t) + B(1+t) = (-A+B)t + A + B.$

which implies . Then . Thus, $-A+B = 0, A+B = 1$$A = \frac{1}{2}, B = \frac{1}{2}$
$\displaystyle \int \frac{1}{\cos{x}}\:dx$$\displaystyle =$$\displaystyle \frac{1}{2} \int \big(\frac{1}{1+t} + \frac{1}{1-t}\big)\:dt = \frac{1}{2} \big(\log\vert 1+t\vert - \log\vert 1-t\vert\big) + c$    $\displaystyle =$$\displaystyle \frac{1}{2} \log\vert\frac{1+t}{1-t}\vert + c = \frac{1}{2}\log\vert\frac{1+\sin{x}}{1-\sin{x}}\vert + c.$  
Integration of Trigonometric Functions[II] Let . Then Now consider the right triangle with the angle ,the adjacent to the angle 1, and opposite to the angle . Thus,

$\displaystyle \int \sin^{m}{x}\cos^{n}{x}\:dx$

$x = 2\tan^{-1}{t}$

$\displaystyle dx = d(2 \tan^{-1}{t}) = \frac{2dt}{1+t^{2}}.$

$\frac{x}{2}$$t$

$\displaystyle \cos{\frac{x}{2}} = \frac{1}{\sqrt{1+t^2}}, \sin{\frac{x}{2}} = \frac{t}{\sqrt{1+t^2}}$


$\displaystyle \sin{x}$$\displaystyle =$$\displaystyle \sin{2\cdot\frac{x}{2}} = 2\sin{\frac{x}{2}}\cos{\frac{x}{2}} = 2 \frac{t}{\sqrt{1 + t^2}}\frac{1}{\sqrt{1 + t^2}} = \frac{2t}{1+t^{2}}$   $\displaystyle \cos{x}$$\displaystyle =$$\displaystyle \cos{2\cdot \frac{x}{2}} = \cos^{2}{\frac{x}{2}} - \sin^{2}{\frac{x}{2}} = \frac{1}{1 + t^2} - \frac{t^2}{1 + t^2} = \frac{1-t^{2}}{1+t^{2}}.$  

Example ..311   Find the integral . $\displaystyle{\int \frac{1}{1+\cos{x}}}$

It is not in the form [1]. Then let , . SOLUTION$t = \tan{\frac{x}{2}}$$x = 2\tan^{-1}{t}$

$\displaystyle dx = \frac{2}{1+ t^2}dt, \ \cos{x} = \frac{1 - t^2}{1 + t^2}. $

Thus,
$\displaystyle \int \frac{dx}{1 + \cos{x}}$$\displaystyle =$$\displaystyle \int \frac{\frac{2dt}{1 + t^2}}{1 + \frac{1 - t^2}{1 + t^2}} = \int \frac{2}{1 + t^2 + 1 - t^2}dt$    $\displaystyle =$$\displaystyle \int dt = t + c = \tan{\left(\frac{x}{2}\right)} + c
\ensuremath{\ \blacksquare}$  

  Find the integral .
Exercise ..311$\displaystyle{\int\sec^{3}{x}}$

SOLUTION
$\left\{\begin{array}{lcl}
f = \sec{x} & & g' = \sec^2{x}\\
&\searrow& \\
f' = \sec{x}\tan{x} &\leftarrow& g = \tan{x}
\end{array}\right.$
$\displaystyle \int{\sec^3{x}} \; dx$$\displaystyle =$$\displaystyle \int \sec^2{x}\sec{x}\; dx$    $\displaystyle =$$\displaystyle \sec{x}\tan{x} - \sec{x}\tan^2{x}\;dx$    $\displaystyle =$$\displaystyle \sec{x}\tan{x} - \int \sec^3{x}\; dx + \int \sec{x}\; dx.$  
Now let . Then $I = \int \sec^3{x}\; dx$
$\displaystyle 2I$$\displaystyle =$$\displaystyle \sec{x}\tan{x} + \int \sec{x}\;dx$    $\displaystyle =$$\displaystyle \sec{x}\tan{x} + \log\vert\sec{x} + \tan{x}\vert + c.$  
Thus,

$\displaystyle I = \frac{1}{2}\left(\sec{x}\tan{x} + \log\vert\sec{x} + \tan{x}\vert \right) + c\ensuremath{\ \blacksquare}$

Exercise A


1.
Work out the following integrals?D

(a)$\displaystyle{\int{\sin^3{x}\cos{x}}\ dx}$(b)$\displaystyle{\int{\sin^2{3x}\cos{3x}}\ dx}$(c)$\displaystyle{\int{\cos^2{x}}\ dx}$

(d)$\displaystyle{\int{\cos^{3}{x}} \ dx }$(e)$\displaystyle{\int{\cos^{4}{x}\sin^3{x}}\ dx}$(f)$\displaystyle{\int{\sin{2x}\cos{3x}}\ dx}$

(g)$\displaystyle{\int{\sin{2x}\sin{x}}\ dx}$(h)$\displaystyle{\int{\cos{x}\cos{2x}}\ dx}$(i)$\displaystyle{\int{\tan{x}\sec^2{x}}\ dx}$

(j)$\displaystyle{\int{\sec^3{x}}\ dx}$

Exercise B


1.
Work out the following integrals?D

(a)$\displaystyle{\int{\sin^3{x}}\ dx}$(b)$\displaystyle{\int{\sin^2{3x}}\ dx}$(c)$\displaystyle{\int{\sin^3{x}\cos^2{x}}\ dx}$

(d)$\displaystyle{\int{\cos{3x}\sin{2x}} \ dx }$(e)$\displaystyle{\int{\sin^5{x}}\ dx}$(f)$\displaystyle{\int{\sec^2{\pi x}}\ dx}$(g)$\displaystyle{\int{\tan^3{x}}\ dx}$

(h)$\displaystyle{\int{\tan^2{x}\sec^2{x}}\ dx}$(i)$\displaystyle{\int{\tan^3{x}\sec^3{x}}\ dx}$(j)$\displaystyle{\int{\sec^5{x}}\ dx}$

(k)$\displaystyle{\int{\frac{dx}{3 - 2\cos{x}}}}$(l)$\displaystyle{\int{\frac{\sin{x}}{2 - \sin{x}}}\ dx}$(m)$\displaystyle{\int{\frac{1 + \sin{x}}{1 + \cos{x}}}\ dx}$

(n)$\displaystyle{\int{\frac{\sin^2{x}}{\sin^2{x} - \cos^2{x}}}\ dx}$(o)$\displaystyle{\int{\frac{dx}{1 + \tan{x}}}}$




next up previous contents index
Next:Integration of Irrational Functions Up:Integration Previous:Integration of Rational Functions Contents Index