Limit of function

Exercise

1.
Find the limit of the followings:D
(a)
$\displaystyle{\lim_{x \rightarrow 2}(x^2 + 4x)}$
(b)
$\displaystyle{\lim_{x \rightarrow 2}\frac{x^2 - 3x + 2}{x^2 -4}}$
(c)
$\displaystyle{\lim_{x \rightarrow 0}\frac{2x^4 - 6x^3 + x^2 + 2}{x - 1}}$
(d)
$\displaystyle{\lim_{x \rightarrow 1}\frac{2x^4 - 6x^3 + x^2 + 3}{x - 1}}$
(e)
$\displaystyle{\lim_{x \rightarrow 0}\frac{\sqrt{1+x} - \sqrt{1 - x}}{x}}$
(f)
$\displaystyle{\lim_{x \rightarrow 0}\frac{(1+x)^{1/3} - (1 - x)^{1/3}}{x}}$
(g)
$\displaystyle{\lim_{x \rightarrow 2} f(x)}$, where $\displaystyle{f(x) = \left\{\begin{array}{cl}
x^2, & x \neq 2\\
3, & x = 2
\end{array} \right.}$
2.
Find the limit of the followings using $\displaystyle{\lim_{x \rightarrow 0}\frac{\sin{x}}{x} = 1}$
(a)
$\displaystyle{\lim_{x \rightarrow 0}\frac{\sin{2x}}{\sin{3x}}}$
(b)
$\displaystyle{\lim_{x \rightarrow 0}\frac{\cos{x} - 1}{x}}$
(c)
$\displaystyle{\lim_{x \rightarrow 0}\frac{\sin^{-1}{x}}{x}}$
(d)
$\displaystyle{\lim_{x \rightarrow 0}x \sin\frac{1}{x}}$
3.
Show that if $\lim_{x \rightarrow a}\vert f(x)\vert = 0$Cthen $\lim_{x \rightarrow a}f(x) = 0$D