elementary functions

Exercise

1.
Show that the following formulas are true for arbitrary angle $\alpha, \beta$
(a)
$\sin{(\alpha \pm \beta)} = \sin{\alpha}\cos{\beta} \pm \cos{\alpha}\sin{\beta}$ (Addition formula)
(b)
$\cos{(\alpha \pm \beta)} = \cos{\alpha}\cos{\beta} \mp \sin{\alpha}\sin{\beta}$
(c)
$\displaystyle{\cos^{2}{\frac{\alpha}{2}} = \frac{1 + \cos{\alpha}}{2}}$ (Half angle formula)
(d)
$\displaystyle{\sin{\alpha}\cos{\beta} = \frac{1}{2}\left(\sin{(\alpha + \beta)} + \sin{(\alpha - \beta)}\right)}$ (Product to sum)
(e)
$\displaystyle{\sin{\alpha} + \sin{\beta} = 2 \sin{\frac{\alpha + \beta}{2}} \cos{\frac{\alpha - \beta}{2}}}$ (Sum to product)
2.
Find the value of followings:.
(a)
$\displaystyle{\cos{\frac{5\pi}{4}}}$
(b)
$\displaystyle{\sin{\frac{7\pi}{12}}}$
(c)
$\displaystyle{\cos{\frac{\pi}{8}}}$
3.
Find the value of followings:
(a)
$\displaystyle{\sin^{-1}{(\frac{-1}{2})}}$
(b)
$\displaystyle{\cos^{-1}{(-1)}}$
(c)
$\displaystyle{\tan^{-1}{(-1)}}$
(d)
$\displaystyle{\tan^{-1}{\sqrt{3}}}$
4.
For all $x$,show that $\displaystyle{\sin^{-1}{x} + \cos^{-1}{x} = \frac{\pi}{2}}$ holds.
5.
Derive the following formulae:.
(a)
$\displaystyle{\sin^{-1}{(-x)} = - \sin^{-1}{x}}$
(b)
$\displaystyle{\cos^{-1}{(-x)} = \pi - \cos^{-1}{x}}$