Limit and Continuity

Exercise3.1
1. Find out if the next set of points is a region
(a)
$z$ set of points on plane excluding 0
(b)
$\{z : \Re{z} > 0\}$
(c)
$\{z : \Im {z} \geq 0\}$
(d)
$\{z : 1 < \vert z\vert < 2\}$

2. Find the limit of the followings.

(a)
$\displaystyle{\lim_{z \to i}(z^2 + 2z)}$
(b)
$\displaystyle{\lim_{z \to \frac{i}{2}}\frac{(2z-3)(z+i)}{(iz - 1)^2}}$
(c)
$\displaystyle{\lim_{z \to 1+i}\frac{z - 1 -i}{z^2 - 2z + 2}}$
(d)
$\displaystyle{\lim_{z \to e^{i\pi/4}}\frac{z^2}{z^4 + z + 1}}$

3. Find the point where the following function is not continuous.

(a)
$z^2$
(b)
$e^z$
(c)
$\frac{2z}{z+ i}$
(d)
$\frac{2z - 3}{z^2 + 2z + 2}$
(e)
$\frac{z+1}{z^4 + 1}$
(f)
$\frac{z^2 + 4}{z - 2i}$
(g)
$f(z) = \left\{\begin{array}{ll}
\frac{z^2 + 4}{z - 2i} & (z \neq 2i)\\
4i & (z = 2i)
\end{array}\right.$