演習問題


1.
次の初期値問題を解け.
(a)
$\displaystyle{ y^{\prime\prime} + 4y^{\prime} - 5y = e^{t}, \ y(0) = 0, \ y^{\prime}(0) = 1}$
(b)
$\displaystyle{ y^{\prime\prime} + 4y^{\prime} + 4y = e^{-t}, \ y(0) = 1, \ y^{\prime}(0) = 1}$
(c)
$\displaystyle{ y^{\prime\prime} + 4y^{\prime} - 5y = f(t), \ y(0) = 0, \ y^{\prime}(0) = 0}$

$\displaystyle f(t) = \left\{\begin{array}{rl}
2,&0 < t < \pi\\
\cos{t},&t > \pi
\end{array} \right. $

(d)
$\displaystyle{ \left\{\begin{array}{l}
y_{1}^{\prime} + y_{2} = 0 \\
y_{1} + y_{2}^{\prime} = 0, \ y_{1}(0) = 2, \ y_{2}(0) = 0
\end{array}\right.}$
(e)
$\displaystyle{ \left\{\begin{array}{l}
y_{1}^{\prime} - y_{2}^{\prime} - y_{2} ...
...^{\prime} - y_{2} = e^{2t}, \ y_{1}(0) = 0, \ y_{2}(0) = 1
\end{array}\right.}$
(f)
$\displaystyle{ \left\{\begin{array}{l}
y_{1}^{\prime\prime} + 2y_{2}^{\prime} +...
...(0) = y_{1}^{\prime}(0) = y_{2}(0) = y_{2}^{\prime}(0) = 0
\end{array}\right.}$