8.2 解答

8.2

1.


$\displaystyle {\cal F}_{s}[u_{xx}]$ $\displaystyle =$ $\displaystyle - \omega {\cal F}_{c}[u_{x}]$  
  $\displaystyle =$ $\displaystyle - \omega[-u(0,t) + \omega {\cal F}_{s}[u]]$  
  $\displaystyle =$ $\displaystyle -\omega^2 {\cal F}_{s}[u] = - \omega^2 U_{s}(\omega,t)$  

$\displaystyle {\cal F}_{s}[u_{t}] = \frac{\partial}{\partial t}{\cal F}_{s}[u] = \frac{\partial}{\partial t}U_{s}(\omega ,t) $

これより, $u_{t} = 2u_{xx}$の両辺にフーリエ変換を施すと

$\displaystyle \frac{\partial}{\partial t}U_{s}(\omega ,t) = - 2\omega^2 U_{s}(\omega,t) $

この式は$t$について1階線形なので,

$\displaystyle U_{s}(\omega,t) = C_{\omega}e^{-2\omega^2 t} $

を得る.ここで,初期条件 $u(x,0) = 25x$を用いると

$\displaystyle {\cal F}_{s}[u(x,0)] = U_{s}(\omega,0) = C_{\omega} $

また
$\displaystyle {\cal F}_{s}[u(x,0)]$ $\displaystyle =$ $\displaystyle {\cal F}_{s}[25x] = \frac{2}{\pi}\int_{0}^{4}25x \sin{\omega x}dx$  
  $\displaystyle =$ $\displaystyle \frac{50}{\pi}\left\{\left[\frac{-x\cos{\omega x}}{\omega} \right]_{0}^{4} + \frac{1}{\omega}\int_{0}^{4} \cos{\omega x} dx \right\}$  
  $\displaystyle =$ $\displaystyle \frac{50}{\pi}\left\{\frac{-4 \cos{4 \omega}}{\omega} + \left[\frac{\sin{\omega x}}{\omega^2}\right]_{0}^{4}\right\}$  
  $\displaystyle =$ $\displaystyle \frac{50}{\pi}\left[\frac{-4\cos{4 \omega}}{\omega} + \frac{\sin{4 \omega x}}{\omega^2} \right]$  

よって,

$\displaystyle U_{s}(\omega,t) = \frac{50}{\pi}\left[\frac{-4\omega \cos{4\omega} + \sin{4\omega}}{\omega^2}\right] e^{-2\omega^2 t} $

ここでフーリエ反転公式を用いると
$\displaystyle u(x,t)$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\infty}U_{s}(\omega,t)\sin{\omega x}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\infty}\frac{50}{\pi}\left[\frac{-4\omega ...
...omega} + \sin{4\omega}}{\omega^2}\right] e^{-2\omega^2 t}\sin{\omega x} d\omega$  
  $\displaystyle =$ $\displaystyle \frac{100}{\pi^2} \int_{0}^{\infty}\left[\frac{-4\omega \cos{4\omega} + \sin{4\omega}}{\omega^2}\right] e^{-2\omega^2 t}\sin{\omega x} d \omega$  

2.

$\displaystyle {\cal F}[u_{tt}] = \frac{\partial^2}{\partial t^2}U(\omega,t) $

$\displaystyle {\cal F}[u_{xx}] = (i \omega^2)U(\omega,t)= - \omega^2 U(\omega,t) $

より偏微分方程式 $u_{tt} = c^2 u_{xx}$は次の常微分方程式に変換される.

$\displaystyle \frac{d^2}{dt^2}U(\omega,t) + c^2 \omega^2 U(\omega,t) = 0 $

この式は$t$について線形で,特性根は $\pm ic \omega$なので

$\displaystyle U(\omega,t) = A_{\omega} \cos{c \omega t} + B_{\omega} \sin{c \omega t} $

と表わせる.ここで $u(x,0) = f(x)$より

$\displaystyle {\cal F}[u(x,0)] = U(\omega,0) = F(\omega) = A_{\omega} $

また $u_{t}(x,0) = 0$より

$\displaystyle {\cal F}[u_{t}(x,0)] = \frac{\partial}{\partial t}U(\omega,0) = c\omega B_{\omega} = 0$

よって,

$\displaystyle U(\omega,t) = F(\omega)\cos{c \omega t} $

を得る.ここで,反転公式を用いて,$u(x,t)$を求めると,
$\displaystyle u(x,t)$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\infty}^{\infty} U(\omega,t)e^{i \omega x} d\omega$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)\cos{c \omega t}e^{i \omega x} d\omega$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)\left(\frac{e^{ic\omega t} + e^{-ic \omega t}}{2} \right) e^{i \omega x} d\omega$  
  $\displaystyle =$ $\displaystyle \frac{1}{4\pi}\int_{-\infty}^{\infty} F(\omega)\left(e^{i \omega(x +ct)} + e^{i\omega(x - ct} \right) d\omega$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\left(\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)...
...ega + \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega(x - ct)} d \omega \right)$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}(f(x+ct) + f(x-ct))$  

3.


$\displaystyle {\cal F}_{c}[u_{xx}]$ $\displaystyle =$ $\displaystyle - u_{x}(0,t) + \omega {\cal F}_{s}[u_{x}]$  
  $\displaystyle =$ $\displaystyle - f(t) - \omega^2 {\cal F}_{c}[u] = -f(t) - \omega^2 U_{c}(\omega,t)$  

$\displaystyle {\cal F}_{c}[u_{tt}] = \frac{\partial^2}{\partial t^2}U_{c}(\omega,t) $

これより, $u_{tt} = c^2 u_{xx}$の両辺にフーリエ変換を施すと

$\displaystyle \frac{\partial^2}{\partial t^2}U_{c}(\omega ,t) + c^2 \omega^2 U_{c}(\omega,t) = -c^2 f(t) $

この式は$t$について1階線形なので,余関数は

$\displaystyle U_{cc}(\omega,t) = A_{\omega} \cos{c \omega t} + B_{\omega} \sin{c \omega t} $

また,特殊解は

$\displaystyle U_{cp} = v_{1}\cos{c \omega t} + v_{2}\sin{c \omega t} $

定数変化法を用いると

$\displaystyle v_{1}' \cos{c \omega t} + v_{2}' \sin{c \omega t} = 0$

$\displaystyle v_{1}' (-c \omega \sin{c \omega t}) + v_{2}' (c \omega \cos{c \omega t} = -c^2 f(t)$

と表わせる.これより,

$\displaystyle v_{1}' = \frac{\left\vert\begin{array}{cc}
0 & \sin{c \omega t}\...
...mega t}
\end{array} \right\vert} = \frac{c^2 f(t) \sin{c \omega t}}{c \omega} $

よって,

$\displaystyle v_{1} = \frac{1}{\omega}\int_{}^{t} f(x)\sin{c \omega x} dx $

同様にして,

$\displaystyle v_{2} = -\frac{1}{\omega}\int_{}^{t} f(x)\cos{c \omega x} dx $

を得る.これより,
$\displaystyle U_{c}(\omega,t)$ $\displaystyle =$ $\displaystyle U_{cc}(\omega,t) + U_{cp}(\omega,t)$  
  $\displaystyle =$ $\displaystyle \left(A_{\omega} + \frac{1}{\omega}\int_{}^{t} f(x)\sin{c \omega x} dt\right)\cos{c \omega t}$  
  $\displaystyle +$ $\displaystyle \left(B_{\omega} - \frac{1}{\omega}\int_{}^{t} f(x)\cos{c \omega x} dt\right)\sin{c \omega t}$  

ここで, $u(x,0) = 0$より

$\displaystyle {\cal F}_{c}[u(x,0)] = U_{c}(\omega,0) = A_{\omega} = 0 $

$\displaystyle {\cal F}_{c}[u_{t}(x,0)] = \frac{\partial}{\partial t}U_{c}(\omega,0) = -\frac{1}{\omega} f(0) + c\omega B_{\omega} = 0 $

これより,

$\displaystyle B_{\omega} = \frac{f(0)}{c \omega^2} $

したがって,

$\displaystyle U_{c}(\omega,t) = \frac{f(0))}{c\omega^2} \sin{c \omega t} $

ここで,反転公式を用いて,$u(x,t)$を求めると,
$\displaystyle u(x,t)$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\infty} U_{c}(\omega,t)\cos{ \omega x} d\omega$  
  $\displaystyle =$ $\displaystyle \frac{2f(0)}{c\pi}\int_{0}^{\infty} \frac{\sin{c \omega t} \cos{c \omega t}}{\omega^2} d\omega$