4.2 正項級数

$\sum \frac{1}{n^2} < \infty, \sum \frac{1}{n} = \infty$

1.

(a) $\sum_{n=1}^{\infty}\frac{n}{n^3 + 1} \approx \sum \frac{1}{n^2}$より, $\sum \frac{1}{n^2}$と比較

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{\frac{1}{n^3 + 1}}{\frac{1}{n^{2}}}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{n^2}{n^3 + 1} = 0$  

より $\sum_{n=1}^{\infty}\frac{n}{n^3 + 1}$は収束.

(b) $\sum_{n=1}^{\infty}\frac{n}{3n+2} \approx \sum \frac{1}{n}$より, $\sum \frac{1}{n}$と比較

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{\frac{1}{3n+ 2}}{\frac{1}{n}}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{n}{3n+2} = \frac{1}{3}$  

より $\sum_{n=1}^{\infty}\frac{1}{3n+2}$は発散.

(c) $\sum_{n=1}^{\infty}\frac{1}{n^2 + 1} \approx \sum \frac{1}{n^2}$より, $\sum \frac{1}{n^2}$と比較

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{\frac{1}{n^2 + 1}}{\frac{1}{n^{2}}}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{n^2}{n^2 + 1} = 1$  

より $\sum_{n=1}^{\infty}\frac{1}{n^2 + 1}$は収束.

(d) $\sum_{n=1}^{\infty}\frac{\log{n}}{n}$ $\sum \frac{1}{n}$と比較

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{\frac{\log{n}}{n}}{\frac{1}{n}}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\log{n} = \infty$  

より $\sum_{n=1}^{\infty}\frac{\log{n}}{n}$は発散.

2. (a)

$\displaystyle \int_{1}^{\infty} \frac{1}{x}\; dx = [\log\vert x\vert]_{1}^{\infty-} = \infty$

また,

$\displaystyle \int_{a}^{\infty}\frac{1}{x}\; dx \leq \sum_{n=a}^{\infty} \frac{1}{n}$

より,発散

(b)

$\displaystyle \int_{e}^{\infty} \frac{1}{x\log{x}}\; dx = [\log\vert\log\vert x\vert\vert]_{e}^{\infty-} = \infty$

また,

$\displaystyle \int_{a}^{\infty}\frac{1}{x\log{x}}\; dx \leq \sum_{n=a}^{\infty} \frac{1}{n\log{n}}$

より,発散

(c)

$\displaystyle \sum_{n=a}^{\infty}\frac{1}{n(\log{n})^{2}}$ $\displaystyle \leq$ $\displaystyle \frac{1}{a(\log{a})^2} + \int_{a}^{\infty} \frac{1}{x(\log{x})^2}\; dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{a(\log{a})^2} - [\frac{1}{\log{x}}]_{a}^{\infty-} < +\infty$  

(d)

$\displaystyle \int_{a}^{\infty} \frac{\log{x}}{x}\; dx = [\frac{(\log{x})^2}{2}]_{a}^{\infty-} = \infty$

また,

$\displaystyle \int_{a}^{\infty}\frac{\log{x}}{x}\; dx \leq \sum_{n=a}^{\infty} \frac{\log{n}}{n}$

より,発散

3.

(a) $a_{n} = \frac{1}{2^n}$より

$\displaystyle \rho$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\vert\frac{a_{n+1}}{a_{n}}\vert = \lim_{n \to \infty}\vert\frac{\frac{1}{2^{n+1}}}{\frac{1}{2^{n}}}\vert$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{2^{n}}{2^{n+1}} = \frac{1}{2} < 1$  

より $\sum_{n=1}^{\infty}\frac{1}{2^{n}}$は収束.

(b) $a_{n} = \frac{10^n}{n!}$より

$\displaystyle \rho$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\vert\frac{a_{n+1}}{a_{n}}\vert = \lim_{n \to \infty}\vert\frac{\frac{10^{n+1}}{(n+1)!}}{\frac{10^n}{n!}}\vert$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{10}{n+1} = 0 < 1$  

より $\sum_{n=1}^{\infty}\frac{10^n}{n!}$は収束.