4.3 交項級数

1.

(a) $\lim_{n \to \infty}a_{n} \neq 0$より,この級数は発散.

(b) $\lim_{n \to \infty}a_{n} = \lim_{n \to \infty}\frac{(-1)^2 n}{n+1} \neq 0$より,この級数は発散.

(c)

$\displaystyle \sum_{n=0}^{\infty}(\frac{1}{3n+2} - \frac{1}{3n+3} - \frac{1}{3n+4})$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}\frac{(3n+3)(3n+4) - ((3n+2)(3n+4) - (3n+2)(3n+3)}{(3n+2)(3n+3)(3n+4)}$  
  $\displaystyle =$ $\displaystyle -\sum_{n=0}^{\infty}\frac{9n^2 + 12n + 2}{(3n+2)(3n+3)(3n+4)}$  

ここで, $\sum \frac{1}{n}$を用いた比較判定法を行なうと,

$\displaystyle \lim_{n \to \infty} \frac{\frac{9n^2 + 12n + 2}{(3n+2)(3n+3)(3n+4)}}{\frac{1}{n}} = \frac{1}{3}$

したがって,この級数は発散