3.3 部分積分法

置換積分法でうまく解けなかったときに用いる.

1.

(a) $\left\{\begin{array}{lcl}
u = x & & dv = e^{x}dx\\
&\searrow& \\
du = dx &\leftarrow& v = e^{x}
\end{array}\right.$ より

$\displaystyle \int xe^{x}\; dx$ $\displaystyle =$ $\displaystyle xe^{x} - \int e^{x}dx$  
  $\displaystyle =$ $\displaystyle xe^{x} - e^{x} + c$  

(b) $\left\{\begin{array}{ll}
u = x & dv = sin{x}dx\\
du = dx & v = -\cos{x}
\end{array}\right.$ より

$\displaystyle \int xsin{x}\; dx$ $\displaystyle =$ $\displaystyle -x\cos{x} - \int (-cos{x})dx$  
  $\displaystyle =$ $\displaystyle -x \cos{x} + \sin{x} + c$  

(c) $\left\{\begin{array}{ll}
u = x & dv = e^{2x}dx\\
du = dx & v = \frac{1}{2}e^{2x}
\end{array}\right.$ より

$\displaystyle \int xe^{2x}\; dx$ $\displaystyle =$ $\displaystyle \frac{1}{2}xe^{2x} -\frac{1}{2} \int e^{2x}dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$  

(d) $\left\{\begin{array}{ll}
u = x^2 & dv = e^{x}dx\\
du = 2x\;dx & v = e^{x}
\end{array}\right.$ より

$\displaystyle \int x^2 e^{x}\; dx$ $\displaystyle =$ $\displaystyle x^2 e^{x} - 2\int xe^{x}dx   \left(\begin{array}{ll}
u = x & dv = e^{x}dx\\
du = dx & v = e^{x}
\end{array}\right]$  
  $\displaystyle =$ $\displaystyle x^2 e^{x} - 2[xe^{x} - e^{x}] + c$  
  $\displaystyle =$ $\displaystyle x^2 e^{x} - 2xe^{x} + 2e^{x} + c = (x^2 - 2x + 2)e^{x} + c$  

(e) $\left\{\begin{array}{ll}
u = x^2 & dv = \sin{x}dx\\
du = 2x\;dx & v = -\cos{x}
\end{array}\right.$ より

$\displaystyle \int x^2 \sin{x}\; dx$ $\displaystyle =$ $\displaystyle -x^2 \cos{x} + 2 \int x\cos{x}dx   \left(\begin{array}{ll}
u = x & dv = \cos{x}\;dx\\
du = dx & v = \sin{x}
\end{array}\right]$  
  $\displaystyle =$ $\displaystyle -x^2 \cos{x} + 2[x\sin{x} + \cos{x}] + c$  

(f)

まず, $\int x^{5}e^{x^3}\; dx = \int x^3 \cdot x^2 e^{x^3}\; dx$と書き直し,$t = x^3$とおくと,

$\left\{\begin{array}{ll}
u = x^3 & dv = x^2 e^{x^3}dx\\
du = 3x^2\;dx & v = \frac{1}{3}e^{3}
\end{array}\right.$ より

$\displaystyle \int x^3 \cdot x^2 e^{x^3}\; dx$ $\displaystyle =$ $\displaystyle \frac{1}{3}x^3 e^{x^3} - \int x^2 e^{x^3}\; dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{3}x^3 e^{x^3} - \frac{1}{3}e^{x^3} + c$  
  $\displaystyle =$ $\displaystyle \frac{1}{3}e^{x^3}(x^3 - 1) + c$  

(g) $\left\{\begin{array}{ll}
u = x & dv = \cos{x}dx\\
du = dx & v = \sin{x}
\end{array}\right.$ より

$\displaystyle \int x \cos{x}\; dx$ $\displaystyle =$ $\displaystyle x \sin{x} - \int \sin{x}\;dx$  
  $\displaystyle =$ $\displaystyle x\sin{x} + \cos{x} + c$