6.1 解答

6.1

1.

$f(x,y)$の定義域とは関数$f(x,y)$が実数の値をとる$(x,y)$の範囲のことである.

2変数関数のグラフは正面図($x = 0$),側面図($y = 0$),等位面($z = c$)を用いて描く. (a)

$\displaystyle D(f)$ $\displaystyle =$ $\displaystyle \{(x,y) : f(x,y) \in {\cal R}\}$  
  $\displaystyle =$ $\displaystyle \{(x,y) : x^2 - y^2 \in {\cal R}\} = {\cal R}^2$  

$x = 0$とおくと, $z = f(x,y) = -y^2$より$y-z$平面に放物線. $y = 0$とおくと, $z = f(x,y) = x^2$より$x-z$平面に放物線. $z = c$とおくと, $z = f(x,y) = x^2 - y^2 = c$より,等位面$z = c$に双曲線となる.これを用いて図を描く.

(b)


$\displaystyle D(f)$ $\displaystyle =$ $\displaystyle \{(x,y) : f(x,y) \in {\cal R}\}$  
  $\displaystyle =$ $\displaystyle \{(x,y) : \frac{x^2}{x^2 + y^2} \in {\cal R}\} = {\cal R}^2 - (0,0)$  

$x = 0$とおくと, $z = f(x,y) = 0$$y = 0$とおくと, $z = f(x,y) = 1$より$x-z$平面に直線. $z = c$とおくと, $z = f(x,y) = \frac{x^2}{x^2 + y^2} = c$より, $x^2 = c(x^2 + y^2)$ $(1 - c)x^2 - y^2 = 0$より $y = \pm \sqrt{(1-c)}x$

(c)


$\displaystyle D(f)$ $\displaystyle =$ $\displaystyle \{(x,y) : f(x,y) \in {\cal R}\}$  
  $\displaystyle =$ $\displaystyle \{(x,y) : \log(1 - xy) \in {\cal R}\}$  
  $\displaystyle =$ $\displaystyle \{(x,y) : xy < 1\}$  

$z = c$とおくと, $z = f(x,y) = \log(1 - xy) = c$より, $1 - xy = e^{c}$ $y = \frac{1 - e^{c}}{x}$.ここで,$c$の値を変化させながらグラフを描く