4.2 解答

4.2

1. 正項級数 $\sum a_{n}$において, $\lim_{n \to \infty}\frac{a_{n+1}}{a_{n}} = \rho$が存在するとき, $0 \leq \rho < 1$ならば, $\sum a_{n}$は収束.

(a)

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{\frac{n+1}{3^{n+1}}}{\frac{n}{3^{n}}}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{3^{n}}{n}\cdot\frac{n+1}{3^{n+1}} = \frac{1}{3}$  

より $\sum_{n=1}^{\infty}\frac{n}{3^{n}}$は収束.

(b)

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{(n+1)!}{(n+1)^{n+1}}\cdot\frac{n^{n}}{n!}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\left(\frac{n}{n+1}\right)^{n} = \lim_{n \to \infty}\left(\frac{1}{1 + \frac{1}{n}}\right)^{n}$  
  $\displaystyle =$ $\displaystyle \frac{1}{e} < 1$  

より $\sum_{n=1}^{\infty}\frac{n!}{n^{n}}$は収束.

(c)

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{(n+1)^{n+1}}{(n+1)!}\cdot\frac{n!}{n^{n}}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\left(\frac{n+1}{n}\right)^{n} = \lim_{n \to \infty}\left(1 + \frac{1}{n}\right)^{n}$  
  $\displaystyle =$ $\displaystyle e > 1$  

より $\sum_{n=1}^{\infty}\frac{n^{n}}{n!}$は発散.

(d)

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{(n+1)^2}{2^{n+1}}\cdot\frac{n^2}{2^{n}}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{1}{2}\left(\frac{n+1}{n}\right)^{2} = \lim_{n \to \infty}\frac{1}{2}\left(1 + \frac{1}{n}\right)^{2}$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}$  

より $\sum_{n=1}^{\infty}\frac{n^{2}}{2^{n}}$は収束.

(e)

$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_{n}}$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{2^{n+1}}{(n+1)!}\cdot\frac{n!}{2^{n}}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{2}{n+1} = 0$  

より $\sum_{n=1}^{\infty}\frac{2^{n}}{n!}$は収束.

(f) 部分和を求めると

$\displaystyle S_{n} = 1 + 2^{1/3} - 1 + 3^{1/3} - 2^{1/3} + 4^{1/3} - 3^{1/3} + \cdots + (n+1)^{1/3} - n^{1/3} = (n+1)^{1/3}$

よって

$\displaystyle \sum (\sqrt[3]{n+1} - \sqrt[3]{n}) = \lim_{n \to \infty}S_{n} = \lim_{n \to \infty}(n+1)^{1/3} = \infty$