3.8 解答

3.8

1.

(a) $t = \cos{x}$とおくと $dt = -\sin{x}dx$.このとき

\begin{displaymath}\begin{array}{llll}
x&0 &\Rightarrow & \frac{\pi}{2}\ \hline
t&1 &\Rightarrow & 0
\end{array}\end{displaymath}

に注意すると


$\displaystyle \int_{0}^{\frac{\pi}{2}}{\cos^{4}{x}\sin{x}} dx$ $\displaystyle =$ $\displaystyle \int_{1}^{0}{t^{4}(-dt)}$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}t^{4} dt = \frac{t^{5}}{5}\mid_{0}^{1} = \frac{1}{5}$  

(b) $t = \sqrt{1 + \cos{x}}$とおくと $t^2 = 1 + \cos{x}$より $2tdt = -\sin{x}dx$.このとき

\begin{displaymath}\begin{array}{llll}
x&0 &\Rightarrow & \frac{\pi}{2}\ \hline
t&\sqrt{2} &\Rightarrow & 1
\end{array}\end{displaymath}

に注意すると


$\displaystyle \int_{0}^{\frac{\pi}{2}}{\frac{\sin{x}}{\sqrt{1 + \cos{x}}}} dx$ $\displaystyle =$ $\displaystyle \int_{\sqrt{2}}^{1}{\frac{-2tdt}{t}}$  
  $\displaystyle =$ $\displaystyle -2\int_{0}^{\frac{\pi}{2}} dt = -2t\mid_{\sqrt{2}}^{1} = -2(1 - \sqrt{2}) = 2(\sqrt{2} - 1)$  

(c)

$\displaystyle \int_{0}^{\frac{\pi}{2}}{\sin^{4}{x}} dx$ $\displaystyle =$ $\displaystyle \frac{3!!}{4!!}\frac{\pi}{2} = \frac{3\pi}{16}$  

(d) 部分積分の復習

$\displaystyle \int{f(x)g'(x)} dx = f(x)g(x) - \int{g(x)f'(x)} dx$

より

\begin{displaymath}\begin{array}{ll}
f(x) = x^2 & g'(x) = \cos{x}\\
f'(x) = 2x & g(x) = \sin{x}
\end{array}\end{displaymath}


$\displaystyle \int_{-1}^{1}{x^{2}\cos{x}} dx$ $\displaystyle =$ $\displaystyle x^{2}\sin{x}\mid_{-1}^{1} - \int_{-1}^{1}{2x\sin{x}} dx$  
  $\displaystyle =$ $\displaystyle \sin{1} - \sin{(-1)} - \int_{-1}^{1}{2x\sin{x}} dx = 2\sin{1} - \int_{-1}^{1}{2x\sin{x}} dx$  

ここで,もう一度部分積分を用いると

\begin{displaymath}\begin{array}{ll}
f(x) = 2x & g'(x) = \sin{x}\\
f'(x) = 2 & g(x) = -\cos{x}
\end{array}\end{displaymath}

より
$\displaystyle \int_{-1}^{1}{2x\sin{x}} dx$ $\displaystyle =$ $\displaystyle -2x\cos{x}\mid_{-1}^{1} + 2\int_{-1}^{1}{\cos{x}} dx$  
  $\displaystyle =$ $\displaystyle -2\cos{1} - 2\cos{(-1)} + 2\sin{x}\mid_{-1}^{1}$  
  $\displaystyle =$ $\displaystyle -2\cos{1} - 2\cos{1} + 2\sin{1} - 2\sin{(-1)} = -4\cos{1} + 4\sin{1}$  

したがって,
$\displaystyle \int_{-1}^{1}{x^{2}\cos{x}} dx$ $\displaystyle =$ $\displaystyle 2\sin{1} -[-4\cos{1} + 4\sin{1}]$  
  $\displaystyle =$ $\displaystyle 4\cos{1} - 2\sin{1}$  

(e) $n > 0$のとき

$\displaystyle \int_{0}^{\pi}\cos{nx} dx$ $\displaystyle =$ $\displaystyle \frac{1}{n}\sin{nx}\mid_{0}^{\pi} = 0$  

(f) $x = 2\cos{\theta}$とおくと, $dx = -2\sin{\theta}d\theta$, $\sqrt{4 -x^{2}} = 2\sin{\theta}$.ここで, \begin{displaymath}\begin{array}{c\vert lcl}
x & 0 \rightarrow & 1\ \hline
\theta & \frac{\pi}{2} & \rightarrow & \frac{\pi}{3}
\end{array}\end{displaymath}より,


$\displaystyle \int_{0}^{1}\frac{x^{2}}{\sqrt{4-x^{2}}} dx$ $\displaystyle =$ $\displaystyle -4\int_{\pi/2}^{\pi/3}\frac{4\cos^{3}{\theta}(-2\sin{\theta})}{2\sin{\theta}}d\theta$  
  $\displaystyle =$ $\displaystyle -4\int_{\pi/2}^{\pi/3}\cos^{2}{\theta}d\theta = -4\int_{\pi/2}^{\pi/3}\frac{1 + \cos{2\theta}}{2}d\theta$  
  $\displaystyle =$ $\displaystyle -2\left[\theta + \frac{\sin{2\theta}}{2}\right]_{\pi/2}^{\pi/3}$  
  $\displaystyle =$ $\displaystyle -2\left(\frac{\pi}{3} + \frac{\sin{\frac{2\pi}{3}}}{2} - (-\frac{\pi}{2} + \frac{\sin{\pi}}{2})\right)$  
  $\displaystyle =$ $\displaystyle \frac{\pi}{3} - \frac{\sqrt{3}}{2}$  

(g)

$\displaystyle \int{udv} = uv - \int{vdu}$

より

\begin{displaymath}\begin{array}{ll}
u = x & dv = e^{x}dx\\
du = dx & v = e^{x}
\end{array}\end{displaymath}

よって,
$\displaystyle \int_{0}^{1}xe^{x} dx$ $\displaystyle =$ $\displaystyle xe^{x}\mid_{0}^{1} - \int_{0}^{1}e^{x}dx$  
  $\displaystyle =$ $\displaystyle e - e^{x}\mid_{0}^{1} = e - (e - 1) = 1$  

2. $\displaystyle{I_{n} = \int_{0}^{\frac{\pi}{2}}\sin^{n}{x}dx = \int_{0}^{\frac{\pi}{2}}\sin^{n-1}{x} \sin{x}dx = \frac{n-1}{n} I_{n-2}}$

$\displaystyle{J_{n} = \int_{0}^{\frac{\pi}{2}}\cos^{n}{x}dx = \int_{0}^{\frac{\pi}{2}}\cos^{n-1}{x} \cos{x}dx = \frac{n-1}{n} J_{n-2}}$

3.

(a) $F(-x) = -F(x)$を示せばよい.

$\displaystyle F(-x) = \int_{x}^{-x}f(t)dt = -\int_{-x}^{x}f(t)dt = -F(x)$

(b) $f'(-x) = -f'(x)$を示す.

$\displaystyle f'(-x)$ $\displaystyle =$ $\displaystyle \lim_{h \to 0}\frac{f(-x+h) - f(-x)}{h}$  
  $\displaystyle =$ $\displaystyle \lim_{h \to 0}\frac{f(-(x-h)) - f(x)}{h}$  
  $\displaystyle =$ $\displaystyle \lim_{h \to 0}\frac{-(f(x) - f(x-h)}{h} = -f'(x)$  

(c) $f'(x) = f(x) - f(-x)(-1)$. ここで,3(a)より,$f(x)$は奇関数.したがって, $f'(x) = f(x) - f(x) = 0$

(d) $f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$とおくと, $g(x) = \frac{f(x) + f(-x)}{2}$は偶関数. $h(x) = \frac{f(x) - f(-x)}{2}$は奇関数となる.なぜならば,

$\displaystyle g(-x) = \frac{f(-x) + f(x)}{2} = g(x), h(-x) = \frac{f(-x) - f(x)}{2} = -h(x)$

4. $x = \tan{t}$とおくと, $x^2 + 1 = \sec^{2}{t}$, $dx = \sec^{2}{t}dt$, \begin{displaymath}\begin{array}{c\vert ccc}
x & 0 & \to 1\\
t & 0 & \to \pi/4
\end{array}\end{displaymath}. よって,

$\displaystyle \int_{0}^{\pi/4}\log(\tan{t} + 1)\;dt$

次に, $t = \frac{\pi}{4} - u$とおくと, $\tan(\frac{\pi}{4} - u) = \frac{1 - \tan{u}}{1 + \tan{u}}$より,
$\displaystyle I$ $\displaystyle =$ $\displaystyle \int_{0}^{\pi/4}\log(\tan{t} + 1)\;dt = \int_{0}^{\pi/4}\log(\frac{2}{\tan{u} + 1})\;du$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\pi/4}\log{2}du - I = \frac{\pi \log{2}}{4} - I$  

したがって,

$\displaystyle I = \frac{\pi \log{2}}{8}$