5.1 ベクトル関数

1.

(a)

$\displaystyle {\bf F}'(t)$ $\displaystyle =$ $\displaystyle ((\cos{t})',(\sin{t})')$  
  $\displaystyle =$ $\displaystyle (-\sin{t}, \cos{t}\cos{t})$  
$\displaystyle \Vert{\bf F}\Vert$ $\displaystyle =$ $\displaystyle \sqrt{\cos^2{t} + \sin^2{t}} = 1$  

(b)

$\displaystyle {\bf F}'(t)$ $\displaystyle =$ $\displaystyle ((1+2t)',(3-t)',(2+3t)')$  
  $\displaystyle =$ $\displaystyle (2,-1,3)$  
$\displaystyle \Vert{\bf F}\Vert$ $\displaystyle =$ $\displaystyle \sqrt{4 + 1 + 9} = \sqrt{14}$  

(c)

$\displaystyle {\bf F}(t)$ $\displaystyle =$ $\displaystyle (\int 1\; dt, \int 2t\; dt)$  
  $\displaystyle =$ $\displaystyle (t, t^2)$  

(d)

$\displaystyle {\bf F}(t)$ $\displaystyle =$ $\displaystyle (\int e^{t}\; dt, \int \sqrt{2}\; dt, \int e^{-t}\; dt)$  
  $\displaystyle =$ $\displaystyle (e^{t}, \sqrt{2}t, -e^{-t})$