8.6 ベクトル積分定理

1.

(a) $ 8$(b) 0(c) $ \displaystyle{\frac{1}{4}}$

2.

(a) $ \displaystyle{\frac{36 \sqrt{3}}{5}\pi}$(b) 0(c) $ \displaystyle{\frac{672}{5}}$(d) $ 81\pi$

3.

Greenの定理において, $ P = -y , Q = x$とおくと,

$\displaystyle \oint_{c}xdy - ydx = \iint_{\Omega}\left(\frac{\partial(x)}{\partial x} - \frac{\partial(-y)}{\partial y}\right)dx dy = 2 \iint_{\Omega}dx dy = 2A$

4.

$ \pi ab$

5.

発散定理において $ {\bf F} = f {\rm grad}g$とおくと

$\displaystyle {\bf } \cdot {\hat{\bf n}} = f ({\rm grad}g \cdot {\hat{\bf n}} = f\frac{\partial g}{\partial n}$

また,
$\displaystyle {\rm div} {\bf F}$ $\displaystyle =$ $\displaystyle {\rm div}(f {\rm grad}g)$  
  $\displaystyle =$ $\displaystyle \nabla \cdot (f \nabla g) = (\nabla f)\cdot \nabla g + f\nabla \cdot \nabla g$  
  $\displaystyle =$ $\displaystyle {\rm grad}f \cdot {\rm grad}g + f \nabla^2 g$  

よって

$\displaystyle \iint_{S}f \frac{\partial g}{\partial n} dS = \iiint_{V}(f \nabla^2 g + {\rm grad}f \cdot {\rm grad}g)dV$