Probability axiom

Exercise 3

1. Let $A$ = [Throw the dice 4 times and get a 6 at least once]. $B$ = [Throw two dice 24 times at the same time and get a 6 at least once].

(a)
Find $P(A)$
(b)
Find $P(B)$

2. A patient has complained of certain symptoms. From the experience of doctors, we know that about $5\%$ of people in the same age group have cancer when they complain of the condition. On the other hand, a detailed examination shows a positive reaction of $85\%$ for true cancer patients and a positive reaction of $5\%$ for non-cancer patients. If a patient gives a positive result on the work-up, find the probability that the patient has cancer..

3. Show the following relations..

(a)
$P(\overline{A \cup B}) = P(\overline{A} \cap \overline{B})$
(b)
$P(\overline{A \cap B}) = P(\overline{A} \cup \overline{B})$
(c)
For $B$ and $C$ are mutually exclusive, $P((B \cup C) \mid A) = P(B \mid A) + P(C \mid A)$

Answer

1.

(a) The event $A$'s complementary event $\overline A$, in which you throw 4 times and get a 6 at least once, will be thrown 4 times and never get a 6's. Here, the probability of not having a 6 in each time is $\displaystyle{\frac{5}{6}}$. Then

$\displaystyle P_{r}(\overline A) = \left(\frac{5}{6}\right)^4 $

Therefore,

$\displaystyle P_{r}(A) = 1 - P_{r}(\overline A) = 1 - \left(\frac{5}{6}\right)^4 = \frac{671}{1296} $

(b) Consider the evemt $B$ in which two dice are thrown 24 times at the same time and both rolls 6 at least once. First, when you throw two dice at the same time, the probability that both will roll a 6 is $\displaystyle{\frac{1}{36}}$

Now the complement of the event $B$ is $\overline B$ and throw two dice 24 times at the same time, and both of them will not be 6 rolls. Thus,

$\displaystyle P_{r}(\overline B) = \left(1 - \frac{1}{36}\right)^{24} = \left(\frac{35}{36}\right)^{24} $

Therefore,

$\displaystyle P_{r}(B) = 1 - P_{r}(\overline B) = 1 - \left(\frac{35}{36}\right)^{24} = 0.491 $

2 Let $A = $「true cancer patient」,$B = $「patients came out positive in precision inspection. Find the probability of being a cancer patient if the patient gives a positive result of the work-up.This can be expressed as follows using conditional probabilities..

$\displaystyle P_{r}(A \vert B) $

Note that we know, $P_{r}(A) = 0.05$ $P_{r}(B \vert A) = 0.85$ $P_{r}(B \vert \overline A) = 0.05$. Then using,Bayes'theorem,

$\displaystyle B = B \cap \Omega = B \cap (A \cup \overline A) = (B \cap A ) \cup (B \cap \overline A) $

Thus
$\displaystyle (1) \ P_{r}(B)$ $\displaystyle =$ $\displaystyle P_{r}(B \cap A) + P_{r}(B \cap \overline A) = P_{r}(A)P_{r}(B\vert A) + P_{r}(\overline A)P_{r}(B\vert\overline A)$  
  $\displaystyle =$ $\displaystyle 0.05 \cdot 0.85 + 0.95 \cdot 0.05 = 0.9$  
$\displaystyle (2) \ P_{r}(A \vert B)$ $\displaystyle =$ $\displaystyle \frac{P_{r}(A \cap B)}{P_{r}(B)} = \frac{P_{r}(A) P_{r}(B\vert A)}{P_{R}(B)} = \frac{P_{r}(A) P_{r}(B\vert A)}{P_{R}(B)}$  
  $\displaystyle =$ $\displaystyle \frac{0.05 \cdot 0.85}{0.05 \cdot 0.85 + 0.95 \cdot 0.05} = \frac{0.425}{0.9} = 0.47$  

3.

(a)

$\displaystyle x \in \overline{A \cup B}$ $\displaystyle \Leftrightarrow$ $\displaystyle x \not\in A \cup B$  
  $\displaystyle \Leftrightarrow$ $\displaystyle x \not\in A \ {\rm and} \ x \not\in B$  
  $\displaystyle \Leftrightarrow$ $\displaystyle x \in \overline A \ {\rm and} \ x \in \overline B$  
  $\displaystyle \Leftrightarrow$ $\displaystyle x \in \overline A \cap x \in \overline B$  

Thus,

$\displaystyle \overline{A \cup B} = \overline A \cap \overline B $

Therefore,

$\displaystyle P(\overline{A \cup B}) = P(\overline{A} \cap \overline{B})$

(b)

$\displaystyle x \in \overline{A \cap B}$ $\displaystyle \Leftrightarrow$ $\displaystyle x \not\in A \cap B$  
  $\displaystyle \Leftrightarrow$ $\displaystyle x \not\in A \ {\rm or} \ x \not\in B$  
  $\displaystyle \Leftrightarrow$ $\displaystyle x \in \overline A \ {\rm or} \ x \in \overline B$  
  $\displaystyle \Leftrightarrow$ $\displaystyle x \in \overline A \cup x \in \overline B$  

Thus,

$\displaystyle \overline{A \cap B} = \overline A \cup \overline B $

Therefore,

$\displaystyle P(\overline{A \cap B}) = P(\overline{A} \cup \overline{B})$

(c) $B$ and $C$ are mutually exclusive. Then $B \mid A$ and $C \mid A$ are also mutually exclusive. Thus

$\displaystyle P((B \cup C) \mid A) = P(B \mid A \cup C \mid A) = P(B \mid A) + P(C \mid A) $