Multiple Roots and Complex Roots

Exercise 3.2
1. Solve the following differential equations.

(a) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} =& 6x_{1} + 8x_{2}\\
x_{2}^{\prime} =& -x_{1} + 2x_{2}
\end{array} \right .$
(b) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} =& 2x_{1} - x_{2}\\
x_{2}^{\prime} =& 4x_{1} + 6x_{2}
\end{array} \right .$
(c) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} =& 5x_{1} + 2x_{2} + 2x_{3}\\
x_{2}^...
...{2} - 4x_{3}\\
x_{3}^{\prime} =& 2x_{1} - 4x_{2} + 2x_{3}
\end{array} \right .$
(d) $\ {\bf X}^{\prime} = \left(\begin{array}{ccc}
1&0&1\\
1&1&0\\
-2&0&-1
\end{array}\right){\bf X}$
(e) $\ \left\{\begin{array}{rc}
4x_{1}^{\prime} + x_{1} + 2x_{2}^{\prime} + 7x_{2} =& 0\\
x_{1}^{\prime} - x_{1} + x_{2}^{\prime} + x_{2} =& 0
\end{array} \right . $
(f) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} + x_{1} + 2x_{2}^{\prime} + 3x_{2} =& 0\\
x_{1}^{\prime} - 2x_{1} + 5x_{2}^{\prime} =& 0
\end{array} \right .$

Answer
1. (a) $\det(A - \lambda I) = \left(\begin{array}{cc}
6-\lambda&8\\
-1&2-\lambda
\end{array}\right) = \lambda^2 - 8\lambda + 20 = 0$. Then the eigenvalues are $\lambda = 4 \pm 2i$. Now we find the eigenvector ${\bf C}$ corresponds to $\lambda = 4 + 2i$.

$\displaystyle (A - (4 + 2i)I){\bf C} = \left(\begin{array}{cc}
2 - 2i & 8\\
-1...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

Note that the matrix $\left(\begin{array}{cc}
2 - 2i & 8\\
-1 & -2 - 2i
\end{array}\right) \Longrightarrow \left(\begin{array}{cc}
1&2 + 2i\\
0&0
\end{array}\right) $ is row reduced echelon form and no leading one in the 2nd row. So, we let $c_{2} = \alpha$. Then $c_{1} = -2(1 + i)\alpha$. Thus the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \alpha \left(\begin{array}{c}
-2(1 + i) \\
1
\end{array}\right)$. Now we find the real part and the imaginary part of ${\bf C}e^{\lambda t}$.
$\displaystyle {\bf C}e^{\lambda t}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
-2(1 + i) \\
1
\end{array}\right) e^{(4 +...
...\begin{array}{c}
-2(1 + i) \\
1
\end{array}\right)e^{4t}(\cos{2t} + i\sin{2t})$  
  $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
-2(1+i)e^{4t}(\cos{2t} + i\sin{2t}) \\
e^{4t}(\cos{2t} + i\sin{2t})
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
-2e^{4t}\cos{2t} + 2e^{4t}\sin{2t}) \\
e^...
...y}{c}
-2e^{4t}\cos{2t} - 2e^{4t}\sin{2t}) \\
e^{4t}\sin{2t}
\end{array}\right)$  

Therefore, we can express the general solution as follows:

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
-2\cos{2t} + 2\sin{2t}\\
\...
...egin{array}{c}
-2\cos{2t} - 2\sin{2t}\\
\sin{2t}
\end{array}\right)e^{4t} \ \ $

(b) $\det(A - \lambda I) = \left(\begin{array}{cc}
2-\lambda&-1\\
4&6-\lambda
\end{array}\right) = \lambda^2 - 8\lambda + 16 = (\lambda - 4)^{2}$ Then the eigenvalues are $\lambda = 4$. Now we find the eigenvector ${\bf C}$ corrsponds to $\lambda = 4$.

$\displaystyle (A - 4I){\bf C} = \left(\begin{array}{cc}
-2 & -1\\
4 & 2
\end{a...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

Then

$\displaystyle \left(\begin{array}{cc}
-2&-1\\
4&2
\end{array}\right) \Longrightarrow \left(\begin{array}{cc}
1&\frac{1}{2}\\
0&0
\end{array}\right) $

Now there is no leading one in the 2nd row. So, we let $c_{2} = -2\alpha$とおくと, $c_{1} = \alpha$. Thus the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \alpha \left(\begin{array}{c}
1 \\
-2
\end{array}\right)$. We next find the eigenvector corresponds to $\lambda = 4$ and linearly independent from $C$. Note that if we can find ${\bf C}$ which satisfies

$\displaystyle (A - 4I)^2 {\bf C} = {\bf0}, \ (A - 4I){\bf C} \neq {\bf0} $

Then

$\displaystyle (A - 4I)^2 = \left(\begin{array}{cc}
-2&-1\\
4&2
\end{array}\right)^2 = \left(\begin{array}{cc}
0&0\\
0&0
\end{array}\right) $

Here no leading one in either the 2st row or the 2nd row. So, we let ${\bf C} = \left(\begin{array}{c}
\alpha\\
\beta
\end{array}\right)$. Then this matrix satifies $(A - 4I)^2 = {\bf0}$. Furthermore, we choose $\alpha,\beta$ so that $(A - 4I){\bf C} \neq {\bf0}$. Then ${\bf C} = \left(\begin{array}{c}
1\\
1
\end{array}\right)$. and the 2nd solution is
$\displaystyle e^{At}{\bf C}$ $\displaystyle =$ $\displaystyle e^{4t}e^{(A-4I)t}{\bf C} = e^{4t}[{\bf C} + t(A - 4I){\bf C} + \frac{t^2}{2!}(A - 4I)^2 {\bf C}]$  
  $\displaystyle =$ $\displaystyle e^{4t}\{\left(\begin{array}{c}
1\\
1
\end{array}\right) + \left(...
...array}\right)t\} = e^{4t}\left(\begin{array}{c}
1-3t\\
1+6t
\end{array}\right)$  

Note that $\left(\begin{array}{c}
1\\
-2
\end{array}\right), \left(\begin{array}{c}
1-3t\\
1+6t
\end{array}\right)$ are linearly independent. The general solution can be expressed as follows:

$\displaystyle {\bf X} =e^{4t}[c_{1}\left(\begin{array}{c}
1\\
-2
\end{array}\right) + c_{2}\left(\begin{array}{c}
1-3t\\
1+6t
\end{array}\right)] \ $

(c)
${\bf X} = \left(\begin{array}{ccc}
5&2&2\\
2&2&-4\\
2&-4&2
\end{array}\right){\bf X}$. Then

$\displaystyle \det(A - \lambda I)$ $\displaystyle =$ $\displaystyle \left(\begin{array}{ccc}
5-\lambda&2&2\\
2&2-\lambda&-4\\
2&-4&2-\lambda
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle (5- \lambda)(\lambda^2 - 4\lambda -12) -2(-2\lambda + 12) + 2(2\lambda -12)$  
  $\displaystyle =$ $\displaystyle (5-\lambda)(\lambda+2)(\lambda-6) + 4\lambda -24 + 4\lambda - 24$  
  $\displaystyle =$ $\displaystyle (5-\lambda)(\lambda+2)(\lambda-6) + 8(\lambda - 6)$  
  $\displaystyle =$ $\displaystyle (\lambda - 6)(-\lambda^2 + 3\lambda + 18)$  
  $\displaystyle =$ $\displaystyle -(\lambda - 6)(\lambda^2 - 3\lambda - 18)$  
  $\displaystyle =$ $\displaystyle - (\lambda - 6)(\lambda + 3)(\lambda - 6)$  

Then the eigenvalues are $\lambda = -3,6$.
The eigenvextor ${\bf C}$ corresponds to $\lambda = -3$ is nonzero solution of the equation $(A + 3I){\bf C} = {\bf0}$. Using Gaussian elimination,
$\displaystyle A + 3I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{ccc}
8&2&2\\
2&5&-4\\
2&-4&5
\end{array}\ri...
...in{array}{ccc}
1&\frac{1}{4}&\frac{1}{4}\\
2&5&-4\\
2&-4&5
\end{array}\right)$  
  $\displaystyle \longrightarrow$ $\displaystyle \left(\begin{array}{ccc}
1&\frac{1}{4}&\frac{1}{4}\\
0&\frac{9}{...
...gin{array}{ccc}
1&\frac{1}{4}&\frac{1}{4}\\
0&1&-1\\
0&0&0
\end{array}\right)$  
  $\displaystyle \longrightarrow$ $\displaystyle \left(\begin{array}{ccc}
1&0&\frac{1}{2}\\
0&1&-1\\
0&0&0
\end{array}\right)$  

Then no leading one in the 3rd row. So, we let $c_{3} = 2\alpha$.

$\displaystyle {\bf C} = \left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{arr...
...d{array}\right) = \alpha\left(\begin{array}{c}
-1\\
2\\
2
\end{array}\right) $

Thus, ${\bf X}_{1} = \left(\begin{array}{c}
-1\\
2\\
2
\end{array}\right)e^{-3t}$.

Next we find the eigenvector corresponds to $\lambda = 6$.

$\displaystyle A - 6I = \left(\begin{array}{ccc}
-1&2&2\\
2&-4&-4\\
2&-4&-4
\e...
...ghtarrow \left(\begin{array}{ccc}
1&-2&-2\\
0&0&0\\
0&0&0
\end{array}\right) $

Then the degree of freedom is 2. So, we let $c_{2} = \beta, c_{3} = \gamma$.

$\displaystyle {\bf C} = \left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{arr...
...{array}\right) + \gamma \left(\begin{array}{c}
2\\
0\\
1
\end{array}\right). $

Thus, we have

$\displaystyle {\bf X}_{2} = \left(\begin{array}{c}
2\\
1\\
0
\end{array}\righ...
...6t}, {\bf X}_{3} = \left(\begin{array}{c}
2\\
0\\
1
\end{array}\right)e^{6t} $

Note that ${\bf X}_{1},{\bf X}_{2},{\bf X}_{3}$ are linearly independent. Thus , the general solution is given by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
-1\\
2\\
2
\end{array}\ri...
...ght)e^{6t} + c_{3}\left(\begin{array}{c}
2\\
0\\
1
\end{array}\right)e^{6t}. $

(d)

$\displaystyle \det(A - \lambda I)$ $\displaystyle =$ $\displaystyle \left\vert\begin{array}{ccc}
1-\lambda&0&1\\
1&1-\lambda&0\\
-2&0&-1-\lambda
\end{array}\right\vert$  
  $\displaystyle =$ $\displaystyle (1-\lambda)(\lambda^2 - 1) + (-2\lambda + 2)$  
  $\displaystyle =$ $\displaystyle (1-\lambda)(\lambda^2 -1) + 2(1-\lambda)$  
  $\displaystyle =$ $\displaystyle (1-\lambda)(\lambda^2 + 1)$  

Then we have eigenvalues $\lambda = 1, \pm i$.

Now we find the eigenvector ${\bf C}$ corresponds to $\lambda = 1$ using Guassian elimination.

$\displaystyle A - I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{ccc}
0&0&1\\
1&0&0\\
-2&0&-2
\end{array}\ri...
...rightarrow \left(\begin{array}{ccc}
1&0&0\\
0&0&1\\
0&0&-2
\end{array}\right)$  
  $\displaystyle \longrightarrow$ $\displaystyle \left(\begin{array}{ccc}
1&0&0\\
0&0&1\\
0&0&0
\end{array}\right)$  

Note no leading one in the 2nd row. So, we let $c_{2} = \alpha$. Then

$\displaystyle {\bf C} = \left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{arr...
...nd{array}\right) = \alpha \left(\begin{array}{c}
0\\
1\\
0
\end{array}\right)$

Thus, $X_{1} = \left(\begin{array}{c}
0\\
1\\
0
\end{array}\right)e^{t}$.

We next find the eigenvector ${\bf C}$ corresponds to $\lambda = i$.

$\displaystyle A - i I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{ccc}
1-i&0&1\\
1&1-i&0\\
-2&0&-1-i
\end{arr...
...row \left(\begin{array}{ccc}
1&1-i&0\\
1-i&0&1\\
-2&0&-1-i
\end{array}\right)$  
  $\displaystyle \longrightarrow$ $\displaystyle \left(\begin{array}{ccc}
1&1-i&0\\
0&2i&1\\
0&2-2i&-1-i
\end{ar...
...eft(\begin{array}{ccc}
1&1-i&0\\
0&1&- \frac{i}{2}\\
0&0&0
\end{array}\right)$  
  $\displaystyle \longrightarrow$ $\displaystyle \left(\begin{array}{ccc}
1&0&\frac{1+i}{2}\\
0&1&- \frac{i}{2}\\
0&0&0
\end{array}\right)$  

Note that no leadin one in the 3rd row. Then we let $c_{3} = 2\alpha$.,

$\displaystyle {\bf C} = \left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{arr...
...rray}\right) = \alpha \left(\begin{array}{c}
-1-i\\
i\\
2
\end{array}\right) $

Note that the solutions are given by ${\bf X}_{2} = \Re {\bf C}e^{it}, {\bf X}_{3} = \Im {\bf C}e^{it}$. Thus, we need to find the real part and the imaginary part of ${\bf C}e^{it}$.
$\displaystyle {\bf C}e^{it}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
-1-i\\
i\\
2
\end{array}\right)e^{it} = \left(\begin{array}{c}
-1-i\\
i\\
2
\end{array}\right)(\cos{t} + i \sin{t})$  
  $\displaystyle =$ $\displaystyle \underbrace{\left(\begin{array}{c}
-\cos{t} + \sin{t} \\
-\sin{t...
...+ \sin{t} \\
-\cos{t}\\
-2\sin{t}
\end{array}\right)}_{\mbox{imaginary part}}$  

Thus, the general solution is given by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
0\\
1\\
0
\end{array}\rig...
...begin{array}{c}
\cos{t} + \sin{t} \\
-\cos{t}\\
-2\sin{t}
\end{array}\right) $

(e)

$\displaystyle \left\{\begin{array}{rl}
4x_{1}^{\prime} + x_{1} + 2x_{2}^{\prime...
...
-2x_{1}^{\prime} + 2x_{1} - 2x_{2}^{\prime} - 2x_{2}& = 0
\end{array}\right. $

Solve for $x_{1}^{\prime}$. Then $2x_{1}^{\prime} + 3x_{1} + 5x_{2} = 0$ and

$\displaystyle x_{1}^{\prime} = - \frac{3}{2}x_{1} - \frac{5}{2}x_{2}$ (3.1)

Solve for $x_{2}^{\prime}$. Then $-2x_{2}^{\prime} + 5x_{1} + 3x_{2} = 0$ and

$\displaystyle x_{2}^{\prime} = \frac{5}{2}x_{1} + \frac{3}{2}x_{2}$ (3.2)

Thus,

$\displaystyle {\bf X}^{\prime} = \left(\begin{array}{cc}
-\frac{3}{2}&-\frac{5}{2}\\
\frac{5}{2}&\frac{3}{2}
\end{array}\right){\bf X} $


$\displaystyle \det(A - \lambda I)$ $\displaystyle =$ $\displaystyle \left\vert\begin{array}{cc}
-\frac{3}{2} - \lambda& - \frac{5}{2}...
...3}{2} - \lambda
\end{array}\right\vert = \lambda^2 - \frac{9}{4} + \frac{25}{4}$  
  $\displaystyle =$ $\displaystyle \lambda^2 + 4 = (\lambda + 2i)(\lambda - 2i)$  

The eigenvalues are $\lambda = \pm 2i$.

We find the eigenvector corresponds to $\lambda = 2i$ using Gaussian elimination.

$\displaystyle A - 2i I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{cc}
-\frac{3}{2} - 2i & - \frac{5}{2}\\
\fra...
...}{2}& \frac{3}{2} - 2i \\
-\frac{3}{2} - 2i & - \frac{5}{2}
\end{array}\right)$  
  $\displaystyle \longrightarrow$ $\displaystyle \left(\begin{array}{cc}
1&\frac{1}{5}(3-4i)\\
0&0
\end{array}\right)$  

Then let $c_{2} = \alpha$.

$\displaystyle {\bf C} = \left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right...
...right) = -\frac{\alpha}{5}\left(\begin{array}{c}
3-4i\\
-5
\end{array}\right) $

Thus, we find ${\bf X}_{1} = \Re {\bf C}e^{2it}, {\bf X}_{2} = \Im {\bf C}e^{2it}$.
$\displaystyle {\bf C}e^{2it}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
3-4i\\
-5
\end{array}\right)e^{2it} = \left(\begin{array}{c}
3-4i\\
-5
\end{array}\right)(\cos{2t} + i\sin{2t})$  
  $\displaystyle =$ $\displaystyle \underbrace{\left(\begin{array}{c}
3\cos{2t} + 4\sin{2t}\\
-5\co...
...3\sin{2t} - 4\cos{2t}\\
-5\sin{2t}
\end{array}\right)}_{\mbox{imaginary part}}$  

Therefore, the general solution is given by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
3\cos{2t} + 4\sin{2t}\\
-5...
... \left(\begin{array}{c}
3\sin{2t} - 4\cos{2t}\\
-5\sin{2t}
\end{array}\right) $

(f)
Solve for $x_{2}^{\prime}$. Then $3x_{2}^{\prime} - 3x_{1} - 3x_{2} = 0$ and

$\displaystyle x_{2}^{\prime} = x_{1} + x_{2} $

Also $x_{1}^{\prime} - 2x_{1} + 5x_{2}^{\prime} = 0$. Thus,

$\displaystyle x_{1}^{\prime} = 2x_{1} - 5x_{2}^{\prime} = - 3x_{1} - 5x_{2} $

From this, we have ${\bf X}^{\prime} = \left(\begin{array}{cc}
-3&-5\\
1&1
\end{array}\right){\bf X}.$. Now we find the eigenvalues and eigenvectors.

$\displaystyle \det(A - \lambda I) = \left\vert\begin{array}{cc}
-3-\lambda&-5\\
1&1-\lambda
\end{array}\right\vert = \lambda^2 + 2\lambda + 2 = 0 $

Then the eigenvalues are $\lambda = -1 \pm \sqrt{1-2} = -1 \pm i$.

We find the eigenvector ${\bf C}$ corresponds to $\lambda = -1+i$ using Gaussian elimination.

$\displaystyle A + (1-i)I = \left(\begin{array}{cc}
-2-i&-5\\
1&2-i
\end{array}...
...right) \longrightarrow \left(\begin{array}{cc}
1&2-i\\
0&0
\end{array}\right) $

Then we let $c_{2} = \alpha$.

$\displaystyle {\bf C} = \left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right...
...end{array}\right) = \alpha\left(\begin{array}{c}
-2+i\\
1
\end{array}\right). $

Thus we find ${\bf X}_{1} = \Re {\bf C}e^{(-1+i)t}, {\bf X}_{2} + \Im {\bf C}e^{(-1+i)t}$.
$\displaystyle {\bf C}e^{(-1+i)t}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
-2+i\\
1
\end{array}\right)e^{-t}e^{it} = \left(\begin{array}{c}
-2+i\\
1
\end{array}\right)e^{-t}(\cos{t} + i\sin{t})$  
  $\displaystyle =$ $\displaystyle e^{-t}\underbrace{\left(\begin{array}{c}
-2\cos{t}-\sin{t}\\
\co...
...ray}{c}
\cos{t}-2\sin{t}\\
\sin{t}
\end{array}\right)}_{\mbox{imaginary part}}$  

Therefore, the general solution is given by

$\displaystyle {\bf X} = e^{-t}[c_{1}\left(\begin{array}{c}
-2\cos{t}-\sin{t}\\ ...
...+ c_{2} \left(\begin{array}{c}
\cos{t}-2\sin{t}\\
\sin{t}
\end{array}\right)] $