3.7
1.
Note that by fundamental theorem of calculus, if
is continuous on
, then for
,
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |
2.
(a) Let
. Then
and
DThen note that
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
3.
4.
(a) For
and
, we evaluate
.
First
implies that
implies
5.
![]() |
![]() |
![]() |
implies
. Thus,
![]() |
![]() |
![]() |
|
![]() |
![]() |
Alternate solution
implies
. Then
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
implies
. Then
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |