演習問題

1. 次の関数の $f_{e}(x),f_{o}(x)$を求め,そのグラフを描け.
\begin{displaymath}\begin{array}{l}
(a) \ f(x) = \left\{\begin{array}{cl}
x-1,& ...
...ay}\right . \ \ \ (b) f(x) = e^{x} \ x \in (0, \pi)
\end{array}\end{displaymath}
2. 次の関数のフーリエ余弦,正弦級数を求めよ.
\begin{displaymath}\begin{array}{ll}
(a) \ f(x) = x^2 \ x \in [0,1] & (b) \ f(x)...
... [0,\pi] \\
(c) \ f(x) = \cos{x} \ x \in [0,\pi] &
\end{array}\end{displaymath}
3. 次の関数の複素形フーリエ級数を求めよ.
\begin{displaymath}\begin{array}{l}
(a) \ f(x) = \vert x\vert \ x \in [-\pi,\pi] \ \ \ \ \ (b) \ f(x) = x^2 \ x \in [-\pi,\pi]
\end{array}\end{displaymath}