2.2.1 解答

2.2.1

1.

(a) $ \displaystyle{\left(\frac{3x - 1}{x^2 + 1}\right)^{\prime} = \frac{3(x^2 + 1) - (3x-1)(2x)}{(x^2 + 1)^2} = \frac{-3x^2 + 2x + 3}{(x^2 + 1)^2}}$

(b) $ \displaystyle{(\sec{x})^{\prime} = \left(\frac{1}{\cos{x}}\right)^{\prime} = \sec{x}\tan{x}}$

(c) $ \displaystyle{(\csc{x})^{\prime} = \left(\frac{1}{\sin{x}}\right)^{\prime} = - \csc{x}\cot{x}}$

(d) $ \displaystyle{(\cot{x})^{\prime} = \left(\frac{\cos{x}}{\sin{x}}\right)^{\prime} = -\frac{1}{\sin^{2}{x}}}$

2.

(a) $ \displaystyle{(\sin{(x^{2} + 1)})^{\prime} = 2x\cos{(x^2 + 1)}}$

$ \displaystyle{(\cos{\sqrt{x+ 1}})^{\prime} = -\sin{\sqrt{x+1}}(\sqrt{x+1})^{\prime} =
-\frac{\sin{(\sqrt{x+1})}}{2\sqrt{x+1}}}$

(c) $ \displaystyle{(e^{\sin{x}})^{\prime} = e^{\sin{x}}(\sin{x})^{\prime} = \cos{x} e^{\sin{x}}}$

演習問題

1.
次の関数の導関数を逆関数の微分法を用いて求めよう.
(a)
$ \displaystyle{y = \cos^{-1}{x}}$
(b)
$ \displaystyle{y = \tan^{-1}{x}}$
2.
次の関数の導関数を対数微分法を用いて求めよう.
(a)
$ \displaystyle{y = x^{2}\sqrt{\frac{x^{3} + 2x + 1}{x^{2} - 3x + 1}}}$
(b)
$ \displaystyle{y = x^{x}}$
(c)
$ \displaystyle{y = \sin{x}^{x}}$
(d)
$ \displaystyle{y = x^{1/x}}$
3.
$ \frac{dy}{dx}$ を求めよう.
(a)
$ \displaystyle{x = a\cos{t}, y = a\sin{t},  a > 0}$
(b)
$ \displaystyle{x = \sqrt{t} - \frac{1}{t}, y = t + \frac{1}{\sqrt{t}}}$
4.
次の関数の導関数を求めよう.
(a)
$ \displaystyle{x^{2}(1 + \sqrt{x})}$
(b)
$ \displaystyle{x^{3}\tan{2x}}$
(c)
$ \displaystyle{x\sin^{-1}{x}}$
(d)
$ \displaystyle{\frac{x}{x^{2}+1}}$
(e)
$ \displaystyle{x\sin{x}}$
(f)
$ \displaystyle{x\sin^{-1}x + \sqrt{1-x^{2}}}$
(g)
$ \displaystyle{\tan^{-1}(x^{2} + 1)}$
(h)
$ \displaystyle{\cos{(\sqrt{2x+1})}}$
(i)
$ \displaystyle{\frac{\sin{x} - x\cos{x}}{x\sin{x} + \cos{x}}}$
(j)
$ \displaystyle{e^{2x}\cos{x}}$
(k)
$ \displaystyle{\log{\vert x + \sqrt{x^{2} + A}\vert}}$