Determinant

Exercise2-8

1. Find the determinant of the following matricex:

(a) $\left \vert \begin{array}{rrr}
2&-3&1\\
1&0&2\\
1&-1&1
\end{array}\right\vert $ (b) $\left \vert \begin{array}{rrrr}
2&4&0&5\\
1&-2&-1&3\\
1&2&3&0\\
3&3&-4&-4
\end{array}\right\vert $ (c) $\left \vert \begin{array}{ccccc}
0&0&0&1&0\\
0&1&0&0&0\\
0&0&0&0&1\\
1&0&0&0&0\\
0&0&1&0&0
\end{array}\right\vert$ (d) $\left\vert\begin{array}{rrrrr}
3 & 5 & 1 & 2 & -1\\
2 & 6 & 0 & 9 & 1\\
0 & 0 & 7 & 1 & 2\\
0 & 0 & 3 & 2 & 5\\
0 & 0 & 0 & 0 & -6
\end{array}\right\vert$

2. Factor the following matrices:

(a) $\left\vert\begin{array}{rrr}
1&a^2&(b+c)^2\\
1&b^2&(c+a)^2\\
1&c^2&(a+b)^2
\end{array}\right\vert $ (b) $\left\vert\begin{array}{rrr}
b+c&b&c\\
a&c+a&c\\
a&b&a+b
\end{array}\right\vert $ (c) $\left\vert\begin{array}{rrrr}
1&1&1&1\\
a & b & c & d\\
a^2 & b^2 & c^2 & d^2\\
a^3 & b^3 & c^3 & d^3
\end{array}\right\vert $ 3. Solve the following equations:. $\left\vert\begin{array}{rrr}
1-x&2&2\\
2&2-x&1\\
2&1&2-x
\end{array}\right\vert = 0$

4. Show the equation of the straight line going through two points $(a_{1},a_{2})$ and $(b_{1},b_{2})$is given by

$\displaystyle \left\vert\begin{array}{rrr}
x&y&1\\
a_{1}&a_{2}&1\\
b_{1}&b_{2}&1
\end{array}\right\vert = 0$

5. Show the equation of the plane going through 3 points $(a_{1},a_{2},a_{3}),(b_{1},b_{2},b_{3}),(c_{1},c_{2},c_{3})$ is given by

$\displaystyle \left\vert\begin{array}{cccc}
x&y&z&1\\
a_{1}&a_{2}&a_{3}&1\\
b_{1}&b_{2}&b_{3}&1\\
c_{1}&c_{2}&c_{3}&1
\end{array}\right\vert = 0$

6. Suppose that a system of linear equation $A{\mathbf x} = {\bf0}$ has a fundamental solution ${\mathbf x} \neq {\bf0}$. Then show that $\vert A\vert = 0$

7. Solve the following system of linear equations using Cramer's rule.

(a) $\left\{\begin{array}{rrr}
x-3y&=&5\\
3x-5y&=&7
\end{array}\right . $

(b) $\left\{\begin{array}{rrr}
x+y+z&=&3\\
x+2y+2z&=&5\\
x+2y+3z&=&6
\end{array}\right . $