System of Homogeneous Linear Differential Equation

Exercise 3.1
1. Solve the following differential equations.

(a) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} =& x_{1} + 4x_{2}\\
x_{2}^{\prime} =& x_{1} + x_{2}
\end{array} \right . $
(b) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} =& 6x_{1} - 3x_{2}\\
x_{2}^{\prime} =& 2x_{1} + x_{2}
\end{array} \right .$
(c) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} =& x_{1} + x_{2} - x_{3}\\
x_{2}^{\prime} =& 2x_{2}\\
x_{3}^{\prime} =& x_{2} - x_{3}
\end{array} \right .$
(d) $\ {\bf X}^{\prime} = \left(\begin{array}{ccc}
1&-3&2\\
0&-1&0\\
0&-1&-2
\end{array}\right){\bf X}$
(e) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} + x_{2}^{\prime} + 2x_{2} =& 0\\
x_{1}^{\prime} - 3x_{1} - 2x_{2} =& 0
\end{array} \right . $
(f) $\ \left\{\begin{array}{rc}
x_{1}^{\prime} + 6x_{1} + x_{2}^{\prime} + 3x_{2} =& 0\\
x_{1}^{\prime} - x_{2}^{\prime} + x_{2} =& 0
\end{array} \right . $

Answer
1. (a) $\det(A - \lambda I) = \left(\begin{array}{cc}
1-\lambda&4\\
1&1-\lambda
\end{array}\right) = \lambda^2 - 2\lambda - 3 = (\lambda + 1)(\lambda - 3)$ implies that the eigenvalues are $\lambda = -1, 3$. Then we find the eigenvector ${\bf C}$ corresponding to $\lambda = -1$. Note that $C$ satisfies the follwing equation.

$\displaystyle (A + I){\bf C} = \left(\begin{array}{cc}
2&4\\
1&2
\end{array}\r...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

Now the matrix $\left(\begin{array}{cc}
2&4\\
1&2
\end{array}\right)$ is row reduced to echlon form $\left(\begin{array}{ccc}
1&2\\
0&0
\end{array}\right)$. Then let $c_{2} = \alpha$. Then $c_{1} = - 2\alpha$. Therefore, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \alpha \left(\begin{array}{c}
-2 \\
1
\end{array}\right)$となり, ${\bf X}_{1} = \left(\begin{array}{c}
-2\\
1
\end{array}\right)e^{-t}$.

We next find the eigenvector corresponds to $\lambda = 3$.

$\displaystyle (A - 3I){\bf C} = \left(\begin{array}{cc}
-2&4\\
1&-2
\end{array...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

Note that the matrix $\left(\begin{array}{cc}
-2&4\\
1&-2
\end{array}\right)$ is row reduced echelon form $\left(\begin{array}{ccc}
1&-2\\
0&0
\end{array}\right)$. Now look at the echelon form. no leading one in 2nd row. So, we let $c_{2} = \beta$. Then $c_{1} = 2\beta$. Therefore, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \beta \left(\begin{array}{c}
2 \\
1
\end{array}\right)$. Thus, ${\bf X}_{2} = \left(\begin{array}{c}
2\\
1
\end{array}\right)e^{3t}$. Then the general solution is given by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
-2\\
1
\end{array}\right)e^{-t} + c_{2}\left(\begin{array}{c}
2\\
1
\end{array}\right)e^{3t} $

(b) $\det(A - \lambda I) = \left(\begin{array}{cc}
6-\lambda&-3\\
2&1-\lambda
\end{array}\right) = \lambda^2 - 7\lambda + 12 = (\lambda - 3)(\lambda - 4)$ implies that the eigenvalues are $\lambda = 3,4$. Then we find the eigenvector C corresponds to $\lambda = 3$. $C$ satisfies the following equation.

$\displaystyle (A - 3I){\bf C} = \left(\begin{array}{cc}
3&-3\\
2&-2
\end{array...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

Then the matrix $\left(\begin{array}{cc}
3&-3\\
2&-2
\end{array}\right)$ is row reduced to echelon form $\left(\begin{array}{ccc}
1&-1\\
0&0
\end{array}\right)$. Now there is no leading one in 2nd row. So we let $c_{2} = \alpha$. Then $c_{1} = \alpha$. Therefore, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \alpha \left(\begin{array}{c}
1 \\
1
\end{array}\right)$ and ${\bf X}_{1} = \left(\begin{array}{c}
1\\
1
\end{array}\right)e^{3t}$.

We next find the eigenvector corresponds to $\lambda = 4$.

$\displaystyle (A - 3I){\bf C} = \left(\begin{array}{cc}
2&-3\\
2&-3
\end{array...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

Now the matrix $\left(\begin{array}{cc}
2&-3\\
2&-3
\end{array}\right)$ is row reduced to echelon form $\left(\begin{array}{ccc}
1&-\frac{3}{2}\\
0&0
\end{array}\right)$. Then there is no leading one in 2nd row. So, we let $c_{2} = 2\beta$. Then $c_{1} = 3\beta$. Thus, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \beta \left(\begin{array}{c}
3 \\
2
\end{array}\right)$ and ${\bf X}_{2} = \left(\begin{array}{c}
3\\
2
\end{array}\right)e^{4t}$. Therefore, the general solution is give by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
1\\
1
\end{array}\right)e^{3t} + c_{2}\left(\begin{array}{c}
3\\
2
\end{array}\right)e^{4t} $

(c) $\det(A - \lambda I) = \left(\begin{array}{ccc}
1-\lambda&1&-1\\
0&2-\lambda&0\\
0&1&-1 - \lambda
\end{array}\right) = -(1 - \lambda)(2 - \lambda)(1+\lambda)$ implies that the eigenvalues are $\lambda = -1, 1, 2$. Then we find the eigenvector ${\bf C}$ correponds to $\lambda = -1$. $C$ satisfies the following equation.

$\displaystyle (A + I){\bf C} = \left(\begin{array}{ccc}
2&1&-1\\
0&3&0\\
0&1&...
...{3}
\end{array}\right) = \left(\begin{array}{c}
0\\
0\\
0
\end{array}\right) $

Then the matrix

$\displaystyle \left(\begin{array}{ccc}
2&1&-1\\
0&3&0\\
0&1&0
\end{array}\rig...
... \left(\begin{array}{ccc}
1&0&-\frac{1}{2}\\
0&1&0\\
0&0&0
\end{array}\right)$

is row reduced to echelon form. Note that there is no leading one in the 3rd row. So, we let $c_{3} = 2\alpha$. Then $c_{1} = \alpha, c_{2} = 0$. Thus, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{array}\right) = \alpha \left(\begin{array}{c}
1 \\
0 \\
2
\end{array}\right)$ and ${\bf X}_{1} = \left(\begin{array}{c}
1\\
0\\
2
\end{array}\right)e^{-t}$.

We next find the eigenvector corresponding to $\lambda = 1$.

$\displaystyle (A - I){\bf C} = \left(\begin{array}{ccc}
0&1&-1\\
0&1&0\\
0&1&...
...{3}
\end{array}\right) = \left(\begin{array}{c}
0\\
0\\
0
\end{array}\right) $

Then the matrix

$\displaystyle \left(\begin{array}{ccc}
0&1&-1\\
0&1&0\\
0&1&-2
\end{array}\ri...
...grightarrow \left(\begin{array}{ccc}
0&1&0\\
0&0&1\\
0&0&0
\end{array}\right)$

is row reduced echelon form. Now no leading on in the 1st row. So, let $c_{1} = \beta$. Then $c_{2} = 0, c_{3} = 0$. Thus the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{array}\right) = \beta \left(\begin{array}{c}
1 \\
0\\
0
\end{array}\right)$ and ${\bf X}_{2} = \left(\begin{array}{c}
1\\
0\\
0
\end{array}\right)e^{t}$.

We find the eigenvector corresponds to $\lambda = 2$.

$\displaystyle (A - 2I){\bf C} = \left(\begin{array}{ccc}
-1&1&-1\\
0&0&0\\
0&...
...{3}
\end{array}\right) = \left(\begin{array}{c}
0\\
0\\
0
\end{array}\right) $

Now the matrix

$\displaystyle \left(\begin{array}{ccc}
-1&1&-1\\
0&0&0\\
0&1&-3
\end{array}\r...
...ghtarrow \left(\begin{array}{ccc}
1&0&-2\\
0&1&-3\\
0&0&0
\end{array}\right)
$

is row reduced echelon form,Now there is no leading one in the 3rd row. Let $c_{3} = \gamma$. Then $c_{2} = 3 \gamma, c_{1} = 2 \gamma$. Thus, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{array}\right) = \gamma \left(\begin{array}{c}
2 \\
3\\
1
\end{array}\right)$ and ${\bf X}_{3} = \left(\begin{array}{c}
2\\
3\\
1
\end{array}\right)e^{2t}$.

Therefore, the general solution is given by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
1\\
0\\
2
\end{array}\rig...
...\right)e^{t} + c_{3}\left(\begin{array}{c}
2\\
3\\
1
\end{array}\right)e^{2t}$

(d) $\det(A - \lambda I) = \left(\begin{array}{ccc}
1-\lambda&-3&2\\
0&-1-\lambda&0\\
0&-1&-2 - \lambda
\end{array}\right) = (1 + \lambda)(1 - \lambda)(2+\lambda)$ implies that the eigenvalues are $\lambda = -2,-1,1$. Then we find the eigenvector ${\bf C}$ corresponds to $\lambda = -2$. Note that the eigenvector $C$ satisfies the following equation.

$\displaystyle (A + 2I){\bf C} = \left(\begin{array}{ccc}
3&-3&2\\
0&1&0\\
0&-...
...{3}
\end{array}\right) = \left(\begin{array}{c}
0\\
0\\
0
\end{array}\right) $

Now the matrix

$\displaystyle \left(\begin{array}{ccc}
3&-3&2\\
0&1&0\\
0&-1&0
\end{array}\ri...
...w \left(\begin{array}{ccc}
1&0&\frac{2}{3}\\
0&1&0\\
0&0&0
\end{array}\right)$

is row reduced echelon form and the leading one exits in 1st row and 2nd row. Thus we let $c_{3} = 3\alpha$. Then $c_{1} = -2\alpha, c_{2} = 0$. Thus the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{array}\right) = \alpha \left(\begin{array}{c}
-2 \\
0 \\
3
\end{array}\right)$ and ${\bf X}_{1} = \left(\begin{array}{c}
-2\\
0\\
3
\end{array}\right)e^{-2t}$.

Next we find the eigenvector corresponding to $\lambda = -1$

$\displaystyle (A - I){\bf C} = \left(\begin{array}{ccc}
2&-3&2\\
0&0&0\\
0&-1...
...{3}
\end{array}\right) = \left(\begin{array}{c}
0\\
0\\
0
\end{array}\right) $

Now the matrix

$\displaystyle \left(\begin{array}{ccc}
2&-3&2\\
0&0&0\\
0&-1&-1
\end{array}\r...
...w \left(\begin{array}{ccc}
1&0&\frac{5}{2}\\
0&1&1\\
0&0&0
\end{array}\right)$

is row reduced echelon form. Now there is no leading one in the 3rd row. Let $c_{3} = 2\beta$. Then $c_{2} = -2\beta, c_{3} = -5\beta$. Thus, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{array}\right) = \beta \left(\begin{array}{c}
-5 \\
-2\\
2
\end{array}\right)$ and ${\bf X}_{2} = \left(\begin{array}{c}
-5 \\
-2\\
2
\end{array}\right)e^{-t}$.

We find the eigenvector corresponds to $\lambda = 1$.

$\displaystyle (A - 2I){\bf C} = \left(\begin{array}{ccc}
0&-3&2\\
0&-2&0\\
0&...
...{3}
\end{array}\right) = \left(\begin{array}{c}
0\\
0\\
0
\end{array}\right) $

Then the matrix

$\displaystyle \left(\begin{array}{ccc}
0&-3&2\\
0&-2&0\\
0&-1&-3
\end{array}\...
...grightarrow \left(\begin{array}{ccc}
0&1&0\\
0&0&1\\
0&0&0
\end{array}\right)$

is row reduced echelon form and no leading one in the 1st row. So, we let $c_{1} = \gamma$. Then $c_{2} = 0, c_{3} = 0$. Thus the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{array}\right) = \gamma \left(\begin{array}{c}
1 \\
0\\
0
\end{array}\right)$ and ${\bf X}_{3} = \left(\begin{array}{c}
1\\
0\\
0
\end{array}\right)e^{2t}$.

Therefore the general solution is

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
-2\\
0\\
3
\end{array}\ri...
...\right)e^{-t} + c_{3}\left(\begin{array}{c}
1\\
0\\
0
\end{array}\right)e^{t}$

(e) Solve this for $x_{1}^{\prime},x_{2}^{\prime}$. Then

$\displaystyle x_{1}^{\prime}$ $\displaystyle =$ $\displaystyle 3x_{1} + 2x_{2}$  
$\displaystyle x_{2}^{\prime}$ $\displaystyle =$ $\displaystyle -3x_{1} - 4x_{2}$  

Thus, $\det(A - \lambda I) = \left(\begin{array}{cc}
3-\lambda&2\\
-3&-4-\lambda
\end{array}\right) = \lambda^2 + \lambda -6 = (\lambda - 2)(\lambda + 3)$. This implies that eigenvalues are $\lambda = -3,2$. Then we find the eigenvector ${\bf C}$ corresponds to $\lambda = -3$

$\displaystyle (A + 3I){\bf C} = \left(\begin{array}{cc}
6&2\\
-3&-1
\end{array...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

Then the matrix

$\displaystyle \left(\begin{array}{ccc}
6&2\\
-3&-1
\end{array}\right) \Longrightarrow \left(\begin{array}{ccc}
1&\frac{1}{3}\\
0&0
\end{array}\right)
$

is row reduced echelon form,Now there is no leading one in the 2nd row. So, we let $c_{2} = 3\alpha$. Then $c_{1} = -\alpha$. Thus the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \alpha \left(\begin{array}{c}
-1 \\
3
\end{array}\right)$ and ${\bf X}_{1} = \left(\begin{array}{c}
-1 \\
3
\end{array}\right)e^{-3t}$.

We next find the eigenvector corresponding to $\lambda = 2$.

$\displaystyle (A - 2I){\bf C} = \left(\begin{array}{cc}
1&2\\
-3&-6
\end{array...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

Here the matrix

$\displaystyle \left(\begin{array}{cc}
1&2\\
-3&-6
\end{array}\right) \Longrightarrow \left(\begin{array}{ccc}
1&2\\
0&0
\end{array}\right)$

is row reduced echelon form and no leading one in the 2nd row. So, we let $c_{2} = \beta$. Then $c_{1} = -2\beta$. Thus, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \beta \left(\begin{array}{c}
-2 \\
1
\end{array}\right)$ and ${\bf X}_{2} = \left(\begin{array}{c}
-2 \\
1
\end{array}\right)e^{2t}$. THerefore, the general solution is given by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
-1\\
3
\end{array}\right)e^{-3t} + c_{2}\left(\begin{array}{c}
-2\\
1
\end{array}\right)e^{2t} $

(f) Solve the equation for $x_{1}^{\prime},x_{2}^{\prime}$.,

$\displaystyle 2x_{1}^{\prime} + 6x_{1} + 4x_{2} = 0, \ 2x_{2}^{\prime} + 6x_{1} + 2x_{2} = 0 $

Then
$\displaystyle x_{1}^{\prime}$ $\displaystyle =$ $\displaystyle -3x_{1} - 2x_{2}$  
$\displaystyle x_{2}^{\prime}$ $\displaystyle =$ $\displaystyle -3x_{1} - x_{2}$  

Thus $\det(A - \lambda I) = \left(\begin{array}{cc}
-3-\lambda&-2\\
-3&-1-\lambda
\end{array}\right) = \lambda^2 + 4\lambda - 3 = 0$. Then the eigenvalues are $\lambda = -2 \pm \sqrt{7}$. Now we find the eigenvector ${\bf C}$ corresponds to $\lambda = -2 + \sqrt{7}$. Now the matrix $\left(\begin{array}{ccc}
-1 - \sqrt{7}&-2\\
-3&1 - \sqrt{7}
\end{array}\right)...
...ow \left(\begin{array}{ccc}
1&-\frac{1 - \sqrt{7}}{3}\\
0&0
\end{array}\right)$ is row reduced echelon form and no leading one in the 2nd row. So, we let $c_{2} = 3\alpha$. Then $c_{1} = (1 - \sqrt{7})\alpha$. Thus, the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \alpha \left(\begin{array}{c}
1 - \sqrt{7} \\
3
\end{array}\right)$ and ${\bf X}_{1} = \left(\begin{array}{c}
1 - \sqrt{7} \\
3
\end{array}\right)e^{(-2 + \sqrt{7})t}$.

We next find the eigenvector corresponds to $\lambda = -2 - \sqrt{7}$. The matrix $\left(\begin{array}{ccc}
-1 + \sqrt{7}&-2\\
-3&1 + \sqrt{7}
\end{array}\right)...
...ow \left(\begin{array}{ccc}
1&-\frac{1 + \sqrt{7}}{3}\\
0&0
\end{array}\right)$ is row reduced echelon form and no leading one in the 2nd row. So, we let $c_{2} = 3\alpha$. Thne $c_{1} = (1 + \sqrt{7})\alpha$. Thus the eigenvector is $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \alpha \left(\begin{array}{c}
1 + \sqrt{7} \\
3
\end{array}\right)$ and ${\bf X}_{2} = \left(\begin{array}{c}
1 + \sqrt{7} \\
3
\end{array}\right)e^{(-2 - \sqrt{7})t}$.

Therefore, the general solution is given by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{c}
1 - \sqrt{7} \\
3
\end{arr...
...eft(\begin{array}{c}
1 + \sqrt{7} \\
3
\end{array}\right)e^{(-2 - \sqrt{7})t} $