Numerical Analysis

Exercise 1.8
1. Draw the directional field and solution curve through $(1,0),(0,1),(1,1)$ of the followings:
(a) $ y^{\prime} = y$
(b) $ y^{\prime} -xy + 1 = 0$
2. Using Euler's method to approximate the followings:
(a) $ y^{\prime} = x + y,  y(0) = 0$. Find $y(3)$. Here, $h = 1$
(b) $ y^{\prime} = x^{2},  y(1) = 2$. Find $y(4)$, Here, $h = \frac{1}{2}$

Answer
1(a), (b) omitted

2. (a) \begin{displaymath}\begin{array}{ll}
x_{0} = 0 & y_{0} = 0\\
x_{1} = 1 & y_{1} ...
...
x_{3} = 3 & y_{3} = f(2,1) + y_{2} = 3+ 1 = 4
\end{array} \ \ \end{displaymath}

(b) \begin{displaymath}\begin{array}{ll}
x_{0} = 1 & y_{0} = 2\\
x_{1} = 3/2 & y_{1...
... = 4 & y_{6} = f(7/2,106/8)(1/2) + 106/8 = 155/8
\end{array} \ \end{displaymath}