Nonhomogeneous differential equations

Let $A$ be the square matrix of order $n$. Suppose that ${\bf X}_{1},{\bf X}_{2},\ldots,{\bf X}_{n}$ are linearly independent solutions of ${\bf X}^{\prime} = A{\bf X}$. Then

$\displaystyle \Phi = \left(\begin{array}{cccc}
{\bf X}_{1}&{\bf X}_{2}&\cdots&{\bf X}_{n}
\end{array}\right) $

is called the fundamental matrix. Now
$1. \ \det\Phi = W({\bf X}_{1},{\bf X}_{2},\ldots,{\bf X}_{n}) \neq 0 \ (W = \mbox{Wronskian})$
$2. \ \Phi^{\prime} = A\Phi $
$3. \ c_{1}{\bf X}_{1} + c_{2}{\bf X}_{2} + \cdots + c_{n}{\bf X}_{n} = \Phi\lef...
...in{array}{c}
c_{1}\\
c_{2}\\
\vdots\\
c_{n}
\end{array}\right) = \Phi{\bf C}$
Thus the complementary solution of ${\bf X}^{\prime} = A{\bf X}$ is given by $\Phi{\bf C}$. Now using the variation of parameter, we let $\Phi(t) {\bf U}(t)$ be the solution of ${\bf X}^{\prime} = A{\bf X} + {\bf F}$. Then since the derivative of the vector valued function is given by the derivatives of components of the vector valued function, we have

$\displaystyle (\Phi {\bf U})^{\prime} = \Phi^{\prime} {\bf U} + \Phi {\bf U}^{\prime} $

Now substitute ${\bf X} = \Phi {\bf U}$ into ${\bf X}^{\prime} = A{\bf X} + {\bf F}$. Then

$\displaystyle \Phi^{\prime} {\bf U} + \Phi {\bf U}^{\prime} = A\Phi {\bf U} + {\bf F} $

Since $\Phi^{\prime} = A\Phi$, we have

$\displaystyle \Phi {\bf U}^{\prime} = {\bf F} $

Then by the Cramer's rule

$\displaystyle {\bf U}^{\prime} = \frac{[\Phi:{\bf F}]}{\vert\Phi\vert} $

Integrate to get the general solution

$\displaystyle {\bf X} = \Phi {\bf C} + \Phi {\bf U} $

Example 3..5   Solve the differential equation ${\bf X}^{\prime} = \left(\begin{array}{rr}
1&2\\
3&2
\end{array}\right){\bf X} + \left(\begin{array}{c}
e^{3t}\\
2e^{3t}
\end{array}\right)$

SOLUTION $\det(A - \lambda I) = \lambda^2 -3\lambda -4 = (\lambda +1)(\lambda -4) = 0$. Thus the eigenvalues are $\lambda = -1,4$. The eigenvector corresponds to $\lambda = -1$ is obtained by $(A - (-1(I) = \left(\begin{array}{rr}
2&2\\
3&3
\end{array}\right)$. Then the eigenvector is $\left(\begin{array}{c}
-1\\
1
\end{array}\right)$. Thus ${\bf X}_{1} = \left(\begin{array}{c}
-1\\
1
\end{array}\right)e^{-t}$ is a solution. The eigenvector corresponds to $\lambda = 4$ is obtained by $(A - 4I) = \left(\begin{array}{rr}
-3&2\\
3&-2
\end{array}\right)$. Thus the eigenvector is $\left(\begin{array}{c}
2\\
3
\end{array}\right)$. Therefore, ${\bf X}_{2} = \left(\begin{array}{c}
2\\
3
\end{array}\right)e^{4t}$ is a solution. Then the fundamental matrix is

$\displaystyle \Phi(t) = \left(\begin{array}{rr}
-e^{-t}&2e^{4t}\\
e^{-t}&3e^{4t}
\end{array}\right)$

. Now to find the general solution, we need to solve

$\displaystyle \Phi {\bf U}^{\prime} = {\bf F} $

$\displaystyle \left(\begin{array}{rr}
-e^{-t}&2e^{4t}\\
e^{-t}&3e^{4t}
\end{ar...
...nd{array}\right) = \left(\begin{array}{c}
e^{3t}\\
2e^{3t}
\end{array}\right) $

By Cramer's rule,

$\displaystyle u_{1}^{\prime} = \frac{\left\vert\begin{array}{rr}
e^{3t}&2e^{4t}...
...3e^{4t}
\end{array}\right\vert} = \frac{-e^{7t}}{-5e^{3t}} = \frac{1}{5}e^{4t} $

$\displaystyle u_{2}^{\prime} = \frac{\left\vert\begin{array}{rr}
-e^{-t}&e^{3t}...
...d{array}\right\vert}{-5e^{3t}} = \frac{-3e^{2t}}{-5e^{3t}} = \frac{3}{5}e^{-t} $

Integrating,

$\displaystyle u_{1} = \frac{1}{20}e^{4t}, \ u_{2} = -\frac{3}{5}e^{-t} $

Thus the general solution is
$\displaystyle {\bf X}$ $\displaystyle =$ $\displaystyle \Phi {\bf C} + \Phi {\bf U} = \left(\begin{array}{rr}
-e^{-t}&2e^...
...ft(\begin{array}{c}
\frac{1}{20}e^{4t}\\
-\frac{3}{5}e^{-t}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle \left(\begin{array}{l}
-c_{1}e^{-t}+ 2c_{2}e^{4t} - \frac{5}{4}e^{3t}\\
c_{1}e^{-t}+ 3c_{2}e^{4t} - \frac{7}{4}e^{3t}
\end{array}\right)$  

$\ \blacksquare$

Let $D = d/dt$. Then $x_{1}^{\prime} = Dx_{1}$ and the given differential equation

$\displaystyle {\bf X}^{\prime} = \left(\begin{array}{rr}
1&2\\
3&2
\end{array}\right){\bf X} + \left(\begin{array}{c}
e^{3t}\\
2e^{3t}
\end{array}\right)$

can be written as

$\displaystyle \left\{\begin{array}{rl}
(D - 1)x_{1} - 2x_{2} &= e^{3t}\\
-3x_{1} + (D - 2)x_{2} &= 2e^{3t}
\end{array}\right.
$

Then solve for $x_1$ by using Cramer's rule.

Example 3..6   Solve the following differential equation

$\displaystyle \left\{\begin{array}{rl}
(D - 1)x_{1} - 2x_{2} &= e^{3t}\\
-3x_{1} + (D - 2)x_{2} &= 2e^{3t}
\end{array}\right.
$ (3.1)

SOLUTION Using Cramer's rule, we have

$\displaystyle \left\vert\begin{array}{cc}
D-1 & -2\\
-3 & D-2
\end{array}\righ...
...\vert\begin{array}{cc}
e^{3t} & -2\\
2e^{3t} & D - 2
\end{array}\right\vert . $

Then

$\displaystyle (D^{2} - 3D - 4)x_{1} = (D-2)e^{3t} + 2(2e^{3t}) = 5e^{3t}. $

The characteristic equation of the equation is $m^2 - 3m - 4 = 0$. Thus $m = -1, 4$ and the complementary solution $x_{1c}$ is

$\displaystyle x_{1c} = c_{1}e^{-t} + c_{2} e^{4t}. $

To find $x_{1p}$, we use the method of undetermined coefficients

$\displaystyle H(D)5e^{3t} = (D-3)5e^{3t} = 0 $

implies that

$\displaystyle (D-3)(D^2 - 3D - 4)x_{1} = (D-3)5e^{3t} = 0. $

Thus, $x_{1p} = Ae^{3t}$.

$\displaystyle 9Ae^{3t} - 9Ae^{3t} - 4Ae^{3t} = 5e^{3t}. $

Solve this to get $A = -\frac{5}{4}$. Then

$\displaystyle x_{1} = x_{1c} + x_{1p} = c_{1}e^{-t} + c_{2}e^{4t} - \frac{5}{4}e^{3t}. $

Now put this back to (3.1).

$\displaystyle -c_{1}e^{-t} + 4c_{2}e^{4t} - \frac{15}{4}e^{3t} - c_{1}e^{-t} - c_{2}e^{4t} + \frac{5}{4}e^{3t} - 2x_{2} = e^{3t}. $

Thus,

$\displaystyle x_{2} = -c_{1}e^{-t} + \frac{3}{2}c_{2}e^{4t} - \frac{7}{4}e^{2t}\ensuremath{\ \blacksquare}$

Example 3..7   Solve the following differential equation

$\displaystyle \left\{\begin{array}{rc}
x_{1}^{\prime\prime} - 2x_{1} - 3x_{2} =& 0\\
x_{1} + x_{2}^{\prime\prime} + 2x_{2} =& 0
\end{array}\right .$

SOLUTION Let $u = x_{1}^{\prime}$ and $v = x_{2}^{\prime}$. Then $u^{\prime} = x_{1}^{\prime\prime}$ and $v^{\prime} = x_{2}^{\prime\prime}$. Thus we can express

$\displaystyle \left(\begin{array}{c}
x_{1}\\
x_{2}\\
u\\
v
\end{array}\right...
...rray}\right)\left(\begin{array}{c}
x_{1}\\
x_{2}\\
u\\
v
\end{array}\right) $

$A = \left(\begin{array}{rrrr}
0&0&1&0\\
0&0&0&1\\
2&3&0&0\\
-1&-2&0&0
\end{array}\right)$ Then the eigeneqution is $\lambda^{4} - 1 = 0$ and the eigenvalues are $\lambda = \pm 1, \pm i$. To find the eigenvector, we use Mathematica. Then the eigenvectors correspond to $\lambda = 1,-1,i$ are

$\displaystyle (3,-1,-3,1)^{t},(-3,1,-3,1)^{t},(-i,i,-1,1)^{t} $

Thus ${\bf C}e^{\lambda t}$ is

$\displaystyle \left(\begin{array}{c}
3e^{t}\\
-e^{t}\\
-3e^{t}\\
e^{t}
\end{...
...\cos{t}+i\sin{t})\\
-(\cos{t}+i\sin{t})\\
\cos{t}+i\sin{t}
\end{array}\right)$

Thus the fundamental matric $\Phi(t)$ is

$\displaystyle \Phi(t) = \left(\begin{array}{rrrr}
3e^{t}&-3e^{-t}&\sin{t}&-\cos...
...t}&-3e^{-t}&-\cos{t}&\sin{t}\\
e^{t}&e^{t}&\cos{t}&\sin{t}
\end{array}\right) $

Therefore the general solution is

$\displaystyle {\bf X} = \left(\begin{array}{rrrr}
3e^{t}&-3e^{-t}&\sin{t}&-\cos...
...ght)\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}\\
c_{4}
\end{array}\right) $


$\displaystyle x_{1}$ $\displaystyle =$ $\displaystyle c_{1}3e^{t} -c_{2}3e^{t} = c_{3}\sin{t} - c_{4}\cos{t}$  
$\displaystyle x_{2}$ $\displaystyle =$ $\displaystyle -c_{1}e^{t} + c_{2}e^{-t} - c_{3}\sin{t} + c_{4}\cos{t}
\ensuremath{\ \blacksquare}$  



Subsections