Systems of linear differential equation

Consider

$\displaystyle \left\{\begin{array}{ccc}
x_{1}^{\prime} &= a_{11}x_{1} + a_{12}x...
...{n1}x_{1} + a_{n2}x_{2} +& \cdots + a_{nn}x_{n} + f_{n}(t)
\end{array}\right . $

Using the coefficient matrix $A$ and the column vector $X$ anf $F$, we can express

$\displaystyle {\bf X}^{\prime} = A{\bf X} + {\bf F} $

where

$\displaystyle {\bf X} = \left(\begin{array}{c}
x_{1}(t)\\
x_{2}(t)\\
\vdots\\...
...\begin{array}{c}
f_{1}(t)\\
f_{2}(t)\\
\vdots\\
f_{n}(t)
\end{array}\right) $

The differentiable functions $x_{1},x_{2},\ldots,x_{n}$ satisfying the above equation is called the solution. When ${\bf F} = {\bf0}$, we say that the differential equation is homogeneous equation.

We will explain how to solve ${\bf X}^{\prime} = A{\bf X}$. Let ${\bf X} = {\bf C}e^{\lambda x}$. Then

$\displaystyle \lambda {\bf C}e^{\lambda x} = A {\bf C}e^{\lambda x}$

Since $e^{\lambda x} \neq 0$, we have

$\displaystyle A{\bf C} - {\bf C}\lambda = {\bf0} $

or

$\displaystyle (A - \lambda I){\bf C} = {\bf0} $

Here $I$ denotes the unit matrix of the degree $n$. Now if ${\bf C} = {\bf0}$, then the equation is obviously satisfied. So, we need to find the ${\bf C} \neq {\bf0}$ satisfying the above equation. Note that if ${\rm det}(A - \lambda I) \neq 0$, then ${\bf C} = 0$. Thus to find the ${\bf C} \neq {\bf0}$, we have to solve $\det(A - \lambda I) = 0$. The $\lambda$ is called the eigenvalue of the matrix $A$ and the nonzero C satisfying $(A - \lambda I){\bf C} = {\bf0}$ is called the eigenvector for $A$.

Example 3..1   Solve the following differential equation

$\displaystyle {\bf X}^{\prime} = \left(\begin{array}{rrr}
1&0&1\\ 0&1&-1\\ 1&0&1
\end{array}\right){\bf X}$

SOLUTION Let ${\bf X} = {\bf C}e^{\lambda t}$. Then we have

$\displaystyle (A - \lambda I){\bf C} = {\bf0}\ (*)$

Now

$\displaystyle \det(A - \lambda I) = \left(\begin{array}{rrr}
1-\lambda&0&1\\
0&1-\lambda&-1\\
1&0&1-\lambda
\end{array}\right) = \lambda(1-\lambda)(\lambda -2)$

Thus the eigenvalues are $\lambda = 0,1,2$. Now we find the eigenvector for $\lambda = 0$. Substitute $\lambda = 0$ into the equation (*). Then

$\displaystyle A{\bf C} = \left(\begin{array}{rrr}
1&0&1\\
0&1&-1\\
1&0&1
\end...
...ght)\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{array}\right) = {\bf0} $

To solve this system, we use Gaussian elimination.
$\displaystyle A$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
1&0&1\\
0&1&-1\\
1&0&1
\end{array}\rig...
...ightarrow}
\left(\begin{array}{rrr}
1&0&1\\
0&1&-1\\
0&0&0
\end{array}\right)$  

Now we can let $c_{3} = 1$. Then $c_{1} = -1$, $c_{2} = 1$ Thus, the eigenvector C is $\left(\begin{array}{r}
-1\\
1\\
1
\end{array}\right)$ and ${\bf X}_{1} = \left(\begin{array}{r}
-1\\
1\\
1
\end{array}\right)$ is a solution.
For the eigenvector for $\lambda = 1$.

$\displaystyle A - I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
0&0&1\\
0&0&-1\\
1&0&0
\end{array}\rig...
...ightarrow}
\left(\begin{array}{rrr}
1&0&0\\
0&0&1\\
0&0&-1
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{c}
{}_{R_{2}+R_{3}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrr}
1&0&0\\
0&0&1\\
0&0&0
\end{array}\right)$  

Thus, we can take $c_2 = 1$. Then $c_1 = 0$, $C_3 = 0$ and the eigenvector is $\left(\begin{array}{r}
0\\
1\\
0
\end{array}\right)$. ${\bf X}_{2} = \left(\begin{array}{r}
0\\
1\\
0
\end{array}\right)e^{t}$ is a solution. Similarly, we find the eigenvector corresponds to $\lambda = 2$
$\displaystyle A - 2I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
-1&0&1\\
0&-1&-1\\
1&0&-1
\end{array}\...
...ightarrow}
\left(\begin{array}{rrr}
1&0&-1\\
0&1&1\\
0&0&0
\end{array}\right)$  

Then we can take $c_3 = 1$ and $c_1 = 1, c_2 = -1$. Thus the eigenvector is $\left(\begin{array}{r}
1\\
-1\\
1
\end{array}\right)$. ${\bf X}_{3} = \left(\begin{array}{r}
1\\
-1\\
1
\end{array}\right)e^{2t}$ is a solution. Since ${\bf X}_{1},{\bf X}_{2},{\bf X}_{3}$ are linearly independent, we have ${\bf X} = c_{1}{\bf X}_{1} + c_{2}{\bf X}_{2} + c_{3}{\bf X}_{3}$ and the general solution is

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{r}
-1\\
1\\
1
\end{array}\ri...
...egin{array}{r}
1\\
-1\\
1
\end{array}\right)e^{2t}\ensuremath{\ \blacksquare}$

Theorem 3..1   Suppose that ${\bf X}^{\prime} = A{\bf X}$ has the $n$ different eigenvalues $\lambda_{1},\lambda_{2},\ldots,\lambda_{n}$ and corresponding eigenvectors ${\bf C}_{1},{\bf C}_{2},\ldots,{\bf C}_{n}$. Then the general solution is given by

$\displaystyle {\bf X}(t) = \sum_{i=1}^{n}c_{i}{\bf X}_{i}(t) $

where ${\bf X}_{i} = {\bf C}_{i}e^{\lambda_{i}t} \ (i = 1,2,\ldots,n)$ are the solutions of ${\bf X}^{\prime} = A{\bf X}$ and linearly independent.

Proof

$\displaystyle W(e^{\lambda_{1}t},e^{\lambda_{2}t}, \ldots e^{\lambda_{n}t})$ $\displaystyle =$ $\displaystyle \left\vert\begin{array}{llll}
e^{\lambda_{1}t}& e^{\lambda_{2}t}&...
...lambda_{2}t}& \ldots & \lambda_{n}^{n-1}e^{\lambda_{n}t}
\end{array}\right\vert$  
  $\displaystyle =$ $\displaystyle e^{\lambda_{1}t}e^{\lambda_{2}t}\cdots e^{\lambda_{n}t}\left\vert...
...{1}^{n-1}& \lambda_{2}^{n-1}& \ldots & \lambda_{n}^{n-1}
\end{array}\right\vert$  
  $\displaystyle =$ $\displaystyle \Pi_{1 \leq i < j \leq n-1}(\lambda_j - \lambda_i)$  

Since $\lambda_{1} ,\lambda_{2} , \ldots \lambda_{n} $ are different,

$\displaystyle W(e^{\lambda_{1}t},e^{\lambda_{2}t},\ldots, e^{\lambda_{n}t}) \neq 0\ensuremath{\ \blacksquare}
$

The $n$ linearly independent solutions of ${\bf X}^{\prime} = A{\bf X}$ is called the fundamental solution.

Example 3..2   Solve the following differential equation

$\left\{\begin{array}{rl}
x_{1}^{\prime} &= 8x_{1} + 6x_{2} \\
x_{2}' &= -3x_1 - 2x_2
\end{array}\right .$ .

SOLUTION

$\displaystyle x_{1}^{\prime}$ $\displaystyle =$ $\displaystyle 8x_{1} + 6x_{1}$  
$\displaystyle x_{2}^{\prime}$ $\displaystyle =$ $\displaystyle -3x_{1} - 2x_{2}$  

or

$\displaystyle {\bf X}^{\prime} = \left(\begin{array}{rr}
8&6\\
-3&-2
\end{array}\right){\bf X} $

We find the eigenvalues and eigenvectors.

$\displaystyle \left\vert\begin{array}{ll}
8-\lambda & 6\\
-3 & -2-\lambda
\end{array}\right\vert = -16-6\lambda + \lambda^2 + 18 = \lambda^2 - 6\lambda + 2 = 0$

Thus we have $\lambda = 3 \pm \sqrt{7}$. For $\lambda_1 = 3 + \sqrt{7}, {\bf C}_{1} = \left(\begin{array}{c}
-6\\
5-\sqrt{7}
\end{array}\right)$. For $\lambda_{2} = 3 - \sqrt{7}, {\bf C}_{2} = \left(\begin{array}{c}
-6\\
5 + \sqrt{7}
\end{array}\right)$. Thus the general solution is

$\displaystyle {\bf X}(t) = c_{1}\left(\begin{array}{c}
-6\\
5-\sqrt{7}
\end{ar...
...
5 + \sqrt{7}
\end{array}\right)e^{(3-\sqrt{7})t}\ensuremath{\ \blacksquare}
$



Subsections