4.2 Partial derivatives

1.

(a) $\displaystyle{z_{x} = 3x^2 + y^2, z_{y} = 2xy + 3y^2}$

(b) $\displaystyle{z_{x} = e^{x}\sin{y},  z_{y} = e^{x}\cos{y}}$

(c) $\displaystyle{z_{x} = \frac{2x}{x^2 + y^2},  z_{y} = x^3 + 2xy}$

2.

(a) $\displaystyle{z_{x} = 3x^2 y + y^2, z_{y} = x^3 + 2xy, z_{xx} = 6xy, z_{xy} = 3x^2 + 2y, z_{yx} = 3x^2 + 2y, z_{yy} = 2x}$

(b) $\displaystyle{(y^2 + xy)e^{\frac{x}{y}},  z_{y} = (2xy - x^2)e^{\frac{x}{y}},  z_{xx} = e^{\frac{x}{y}}(x + 2y)}$

$\displaystyle{z_{xy} = e^{\frac{x}{y}}(2y - \frac{x^2}{y}), z_{yy} = e^{\frac{x}{y}}(2x - \frac{2x^2}{y} + \frac{x^3}{y^2})}$

(c) $\displaystyle{z_{x} = \frac{2x}{1 + (x^2 + y^2)^2},  z_{y} = \frac{2y}{1 + (x^...
...  z_{xx} = \frac{2 + 2(x^2 + y^2)^2 - 8x^2(x^2 + y^2)}{(1 + (x^2 + y^2)^2)^2}}$

$\displaystyle{z_{yy} = \frac{2 + 2(x^2 + y^2)^2 - 8y^2(x^2 + y^2)}{(1 + (x^2 + y^2)^2)}, z_{xy} = \frac{ - 8x(x^2 + y^2)}{(1 + (x^2 + y^2)^2)^2}}$

3.

(a) Check to see $f_{x}(0,0), f_{y}(0,0)$ exist. $f{x}(x,0) = \frac{0}{x^2} = 0$ implies $f_{x}(x,0) = 0$.Thus, $f_{x}(0,0) = 0$ $f{y}(0,y) = \frac{y^3}{y^2} = y$ $f_{y}(0,y) = 1$.Therefore, $f_{y}(0,0) = 1$

(b) $f(x,0) = \log{1} = 0$ implies $f_{x}(x,0) = 0$. Then, $f_{x}(0,0) = 0$. $f(0,y) = \log(1+y^2)$ implies $f_{y}(0,y) = \frac{2y}{1 + y^2}$.Thus, $f_{y}(0,0) = 0$.