1.2 Trigonometric Functions

1.

(a)

\begin{figure}\begin{center}\includegraphics[width=5cm]{CALCFIG/1-2-1-a.eps}\end{center}\end{figure}

(b)

\begin{figure}\par
\begin{center}\includegraphics[width=5cm]{CALCFIG/1-2-1-b.eps}\end{center}\par
\end{figure}

(c)

$\displaystyle 1$ $\displaystyle =$ $\displaystyle \cos^{2}{\frac{\alpha}{2}} + \sin^{2}{\frac{\alpha}{2}}$  
$\displaystyle \cos{\alpha}$ $\displaystyle =$ $\displaystyle \cos{\frac{\alpha}{2} + \frac{\alpha}{2}} = \cos^{2}\frac{\alpha}{2} - \sin^{2}\frac{\alpha}{2}$  

Thus,

$\displaystyle \cos^{2}{\frac{\alpha}{2}} = 1 + \cos{\alpha} $

(d)


$\displaystyle \sin{(\alpha + \beta)}$ $\displaystyle =$ $\displaystyle \sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta}$  
$\displaystyle \sin{(\alpha - \beta)}$ $\displaystyle =$ $\displaystyle \sin{\alpha}\cos{\beta} - \cos{\alpha}\sin{\beta}$  

Thus,

$\displaystyle \sin{\alpha}\cos{\beta} = \frac{1}{2}[\sin{(\alpha + \beta)} + \sin{(\alpha - \beta)}] $

(e)


$\displaystyle \sin{(A + B)}$ $\displaystyle =$ $\displaystyle \sin{A}\cos{B} + \cos{A}\sin{B}$  
$\displaystyle \sin{(A - B)}$ $\displaystyle =$ $\displaystyle \sin{A}\cos{B} - \cos{A}\sin{B}$  

Let $A + B = \alpha,  A- B = \beta$. Then

$\displaystyle A = \frac{\alpha + \beta}{2},  B = \frac{\alpha - \beta}{2} $

$\displaystyle \sin{\alpha} + \sin{\beta} = 2[\sin{\frac{\alpha + \beta}{2}} \cos{\frac{\alpha - \beta}{2}}] $

2.

(a) $\displaystyle{-\frac{\sqrt{2}}{2}}$ (b) $\displaystyle{\frac{\sqrt{2} + \sqrt{6}}{4}}$ (c) $\displaystyle{\frac{\sqrt{2 + \sqrt{2}}}{2}}$

3.

(a) $\displaystyle{-\frac{\pi}{6}}$ (b) $\pi$ (c) $\displaystyle{\frac{\pi}{4}}$ (d) $\displaystyle{\frac{\pi}{3}}$

4.

Let $\displaystyle{u = \sin^{-1}{x}, v = \cos^{-1}{x}}$. Then $\displaystyle{x = \sin{u}  (\frac{-\pi}{2} \leq u \leq \frac{\pi}{2}), x = \cos{v}  (0 \leq v \leq \pi)}$
From this, $x = \sin{u} = \cos{v} = \sin(\frac{\pi}{2} - v)$.Thus, $\displaystyle{u + v = \frac{\pi}{2}}$.

5.

(a) $\displaystyle{y = \sin^{-1}{(-x)} \Leftrightarrow -x = \sin{y}  (\frac{-\pi}{2} \leq y \leq \frac{\pi}{2})}$ implies $\displaystyle{x = - \sin{y} \Leftrightarrow x = \sin{(-y)} \Leftrightarrow}$
$\displaystyle{-y = \sin^{-1}{x} \Leftrightarrow y = - \sin^{-1}{x}}$

(b) $\displaystyle{y = \cos^{-1}{(-x)} \Leftrightarrow - x = \cos{y}  (0 \leq y \leq \pi)}$ implies $\displaystyle{x = - \cos{y} \Leftrightarrow x = \cos{(\pi - y)}}$
$\displaystyle{\Leftrightarrow \cos^{-1}{x} = \pi - y \Leftrightarrow y = \pi - \cos^{-1}{x}}$