Trigonometric Function

Radians As in the figure, we let the origin O. Take points ${\rm A}(1,0), {\rm P}(x,y)$ on the unit circle $x^{2} + y^{2} = 1$. Now set $\angle {\rm POA}$ as $\theta$. The angle $\angle {\rm POA}$ for which the arclength of AP is 1 is called 1 radian and denoted by 1radradian..

Figure 1.12: Radians
\includegraphics[width=3.5cm]{SOFTFIG-1/Fig1-3-1.eps}

Then angle $\theta$ is positive if you measure counter clockwise from the positive $x$-axis.

NOTE Suppose that $\angle {\rm POA}$ is $\theta$ degree and $x$ radian. Then

$\displaystyle \frac{\theta}{360} = \frac{x}{2\pi} $

Radian $\Leftrightarrow$ Degree $\pi = 180^{\circ}$ Also, basic angles are measured in degrees and radians to give
Degree 0 30 45 60 90 120 150 180 360
Radian 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{5\pi}{6}$ $\pi$ $2\pi$

Trigonometric Functions Suppose that $\theta = \angle {\rm POA}$. Then the following functions of $\theta$ are called Trigonometric functions.

$\displaystyle \frac{y}{r} = \sin{\theta}\hskip 0.3cm \frac{x}{r} = \cos{\theta} \hskip 0.3cm \frac{y}{x} = \tan{\theta}$

Figure 1.13: Trig function
\includegraphics[width=3.5cm]{SOFTFIG-1/Fig1-3-2.eps}

NOTE As $\theta$ chages the value, the point P$(x,y)$ and the shape of the right triangle $\triangle$ OPH changes.

Example 1..5   Find the value of the followings.
1. $\sin{\frac{\pi}{3}}$ 2. $\sin{(-\frac{\pi}{3})}$ 3. $\cos{\frac{3\pi}{4}}$ 4. $\tan{(-\frac{3\pi}{4})}$

SOLUTION 1. Draw a unit circle with the origin O and draw a line OP with $\theta = \frac{\pi}{3}$. Then the value of $y$ coordinate of P is equal to $\sin{\frac{\pi}{3}}$.

Figure 1.14: Example1-5-1
\includegraphics[width=3.5cm]{SOFTFIG-1/trigvalue_gr4.eps}

$\displaystyle \sin{\frac{\pi}{3}} = \frac{\sqrt{3}}{2}\ensuremath{ \blacksquare}$

2. Similarly, the value of $y$ coordinate of P where $\theta = -\frac{\pi}{3}$ is equal to $\sin{-\frac{\pi}{3}}$. Thus we have

Figure 1.15: Example1-5-2
\includegraphics[width=3.5cm]{SOFTFIG-1/trigvalue_gr7.eps}

$\displaystyle \sin{(-\frac{\pi}{3})} = -\frac{\sqrt{3}}{2}\ensuremath{ \blacksquare}$

3. The value of $x$ coordinate of P where $\theta = \frac{3\pi}{4}$ is equal to $\cos{\frac{3\pi}{4}}$. Thus we have

$\displaystyle \cos{\frac{3\pi}{4}} = -\frac{1}{\sqrt{2}}\ensuremath{ \blacksquare}$

Figure 1.16: Example1-5-3
% latex2html id marker 37703
\includegraphics[width=3.5cm]{SOFTFIG-1/reidai1-5-3_gr4.eps}

4. Stretch the line OP with $\theta = -\frac{3\pi}{4}$ so that $x$ coordinate is -1. Then the ratio of the values of $y$ coordinate and $x$ coordinate is $\tan{-\frac{3\pi}{4}}$. Thus we have

$\displaystyle \tan{(-\frac{3\pi}{4})} = 1\ensuremath{ \blacksquare}$

Figure 1.17: Example1-5-4
% latex2html id marker 37719
\includegraphics[width=3.5cm]{SOFTFIG-1/reidai1-5-4_gr4.eps}

Exercise 1..5   Find the value of the following.
1. $\displaystyle{\cos{\frac{5\pi}{4}}}$ 2. $\displaystyle{\sin(-\frac{5\pi}{6})}$ 3. $\displaystyle{\tan(-\frac{\pi}{3})}$

SOLUTION 1. Draw a unit circle with the origin O and draw a line OP with $\theta = \frac{5\pi}{4}$. Then the value of $x$ coordinate of P is equal to $\cos{\frac{5\pi}{4}}$. Thus we have

$\displaystyle \cos{\frac{5\pi}{4}} = -\frac{\sqrt{2}}{2}\ensuremath{ \blacksquare}$

2. Draw a unit circle with the origin O and draw a line OP with $\theta = -\frac{5\pi}{6}$. Then the value of $y$ coordinate of P is equal to $\sin(-\frac{5\pi}{6})$. Thus we have

$\displaystyle \sin(-\frac{5\pi}{6}) = -\frac{1}{2}\ensuremath{ \blacksquare}$

Figure 1.18: Exercise1-5-1
% latex2html id marker 37750
\includegraphics[width=2.0cm]{SOFTFIG-1/enshu1-5-1_gr4.eps}

Figure 1.19: Exercise1-5-2
% latex2html id marker 37754
\includegraphics[width=2.0cm]{SOFTFIG-1/enshu1-5-2_gr4.eps}

3. Stretch the line OP with $\theta = -\frac{\pi}{3}$ so that $x$ coordinate is 1. Then the ratio of the values of $y$ coordinate and $x$ coordinate is $\tan{-\frac{\pi}{3}}$. Thus we have

$\displaystyle \tan{(-\frac{\pi}{3})} = -\sqrt{3}\ensuremath{ \blacksquare}$

Figure 1.20: Exercise1-5-3
% latex2html id marker 37770
\includegraphics[width=2.0cm]{SOFTFIG-1/enshu1-5-3_gr4.eps}

Basic Trig Identities For all $\alpha,\beta$,
1. $\displaystyle{\cos^2{\alpha} + \sin^2{\alpha} = 1}$
2. $\displaystyle{\sin(\alpha \pm \beta) = \sin{\alpha}\cos{\beta} \pm \cos{\alpha}\sin{\beta}}$
3. $\displaystyle{\cos(\alpha \pm \beta) = \cos{\alpha}\cos{\beta} \mp \sin{\alpha}\sin{\beta}}$

Figure 1.21: addition-law
\includegraphics[width=5cm]{SOFTFIG-1/addition-law.eps}

NOTE 1. Consider the point P$(x,y)$ on the unit circle. Then $\sqrt{x^2 + y^2} = \sqrt{\cos^{2}{\alpha} + \sin^{2}{\alpha}} = 1.$

2. ,3. Look at the figure, you will see $\sin(\alpha + \beta) = \sin{\alpha}\cos{\beta} \pm \cos{\alpha}\sin{\beta}$

2. ,3. Write $\sin(\alpha - \cos{\beta})$ as $\sin(\alpha + (-\beta))$ and note that $\cos(-\beta) = \cos{\beta}, \sin(-\beta) = -\sin{\beta}$.

Example 1..6   Find the value of $\cos\frac{5\pi}{4}$.

SOLUTION

$\displaystyle \cos{\frac{5\pi}{4}}$ $\displaystyle =$ $\displaystyle \cos(\pi + \frac{\pi}{4}) = \cos \pi \cos\frac{\pi}{4} - \sin{\pi}\sin{\frac{\pi}{4}}$  
  $\displaystyle =$ $\displaystyle (-1)\cdot \frac{\sqrt{2}}{2} - 0\cdot \frac{\sqrt{2}}{2} = -\frac{1}{\sqrt{2}} \ensuremath{ \blacksquare}$  

Value of Trig Fct Using the know trig values to create the new one.

Exercise 1..6   Find the value of $\sin{\frac{5\pi}{6}}$.

SOLUTION

$\displaystyle \sin{\frac{5\pi}{6}} = \sin(\pi -\frac{\pi}{6}) = \sin\pi \cos\fr...
...pi}{6} - \cos \pi \sin{\frac{\pi}{6}} = \frac{1}{2} \ensuremath{ \blacksquare}$

$\frac{5\pi}{6}$ $\frac{5\pi}{6} = \frac{\pi + 4\pi}{6} = \frac{\pi}{6} + \frac{2\pi}{3}$

Example 1..7   Find the value of $\displaystyle{\sin(\frac{7\pi}{12})}$.

SOLUTION $\frac{7\pi}{12} = \frac{3\pi + 4\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3}$. Now using trigonometric addition formula, we have

$\displaystyle \sin(\frac{7\pi}{12})$ $\displaystyle =$ $\displaystyle \sin(\frac{\pi}{4}+\frac{\pi}{3}) = \sin{\frac{\pi}{4}}\cos{\frac{\pi}{3}} + \cos{\frac{\pi}{4}}\sin{\frac{\pi}{3}}$  
  $\displaystyle =$ $\displaystyle \frac{\sqrt{2}}{2}\cdot \frac{1}{2} + \frac{\sqrt{2}}{2}\cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4} \ensuremath{ \blacksquare}$  

$\frac{7\pi}{12}$ $\frac{7\pi}{12}$ is equivalent to $105^\circ$ and $105^\circ = 60^\circ + 45^\circ$

Exercise 1..7   Find the value of $\displaystyle{\cos(\frac{\pi}{8})}$.

SOLUTION $\cos(\frac{\pi}{8} + \frac{\pi}{8}) = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$. Using trigonometric addition formula

$\displaystyle \cos(\frac{\pi}{8} + \frac{\pi}{8}) = \cos^{2}\frac{\pi}{8} - \si...
...os^{2}\frac{\pi}{8} - (1 - \cos^{2}\frac{\pi}{8}) = 2\cos^{2}\frac{\pi}{8} - 1.$

Thus, $2\cos^{2}\frac{\pi}{8} = 1 + \frac{\sqrt{2}}{2} = \frac{2 + \sqrt{2} }{2}$. $\cos^{2}\frac{\pi}{8} = \frac{2 + \sqrt{2}}{4}.$ Here, $\cos\frac{\pi}{8} > 0$, we have $\cos\frac{\pi}{8} = \frac{\sqrt{2 + \sqrt{2}}}{2}$ $ \blacksquare$

Half-angle formulas $\cos^{2}{\frac{x}{2}} = \frac{1 + \cos{x}}{2}$
$\sin^{2}{\frac{x}{2}} = \frac{1 - \cos{x}}{2}$



Subsections