Area

For $f(x,y) > 0$, the double integral $\iint_{\Omega}f(x,y)dxdy$ represents the volume of a solid whose base area is $\Omega$ and the height is $f(x,y)$. If $f(x,y) = 1$, then the double integral $\iint_{\Omega}dxdy$ can be thought of the volume of solid whose base area is $\Omega$ and the height is 1. Now ignore the unit, then we can think of the area of $\Omega$. Thus

$\displaystyle \Omega$   base area$\displaystyle = \iint_{\Omega}dxdy$

Example 5..6   Find the area of the region $\Omega$ bounded by the curve $\displaystyle{x^2 = 4y}$ and the line $\displaystyle{2y - x - 4 = 0}$

SOLUTION First find the intersection of two curves. Let $x^2 = 4y = 2x + 8$. Then $x^2 - 2x - 8 = (x-4)(x+2) = 0$ which implies $x = -2,4$.

% latex2html id marker 30413
\includegraphics[width=4.5cm]{SOFTFIG-5/reidai5-6.eps}
Now using the vertical simple, we have $\Omega = \{(x,y): -2 \leq x \leq 4, \frac{x^2}{4} \leq y \leq \frac{x+4}{2}$. Then
$\displaystyle \iint_{\Omega}dxdy$ $\displaystyle =$ $\displaystyle \int_{-2}^{4}dx\int_{\frac{x^2}{4}}^{\frac{x+4}{2}}dy
= \int_{-2}^{4}[\frac{x+4}{2} - \frac{x^2}{4}]dx$  
  $\displaystyle =$ $\displaystyle \left[\frac{x^2}{4} +2x - \frac{x^3}{12}\right ]_{-2}^{4} = \frac{16 - 4}{4} + 2(4+2) -\frac{1}{12}(64 + 8)$  
  $\displaystyle =$ $\displaystyle 3 + 12 - 6 = 9
\ensuremath{ \blacksquare}$  

Exercise 5..6   Find the area of the region $\Omega$ that lies inside the cardioid $\displaystyle{r = 1 + \cos{\theta}}$ but outside the circle $r = 1$.

SOLUTION First find the intersection of $r = 1 + \cos{\theta}$ and $r = 1$. Then since $\cos{\theta} = 0$, $\displaystyle{\theta = -\frac{\pi}{2}, \frac{\pi}{2}}$. Thus by change of variables, $x = r\cos{\theta}, y = r\sin{\theta}$, the region $\Omega$ is transformed into the region $\Gamma = \{(r,\theta) : -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, 1 \leq r \leq 1+\cos{\theta} \}$. Thus
$\displaystyle \iint_{\Omega}dxdy$ $\displaystyle =$ $\displaystyle \iint_{\Gamma}rdrd\theta = 2\int_{0}^{\frac{\pi}{2}}d\theta \int_{1}^{1+\cos{\theta}}rdrd\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\frac{\pi}{2}} \left[\frac{r^2}{2}\right ]_{1}^{1+\cos...
...ta = 2\int_{0}^{\frac{\pi}{2}}\frac{2\cos{\theta} + \cos^{2}{\theta}}{2}d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\frac{\pi}{2}} 2\cos{\theta}d{\theta} + \int_{0}^{\frac...
...}{2}} \cos^{2}{\theta}d{\theta} = 2 + \frac{\pi}{4}
\ensuremath{ \blacksquare}$