Repeated integrals

Exercise

1.
Evaluate the following double integralsD
(a)
$\displaystyle{\iint_{\Omega}x^2 dxdy, \ \Omega: -1 \leq x \leq 1, \ 0 \leq y \leq 3}$
(b)
$\displaystyle{\iint_{\Omega}e^{x+y} dxdy, \ \Omega: 0 \leq x \leq 1, \ 0 \leq y \leq x}$
(c)
$\displaystyle{\iint_{\Omega}\sqrt{xy} dxdy, \ \Omega: 0 \leq y \leq 1, \ y^2 \leq x \leq y}$
(d)
$\displaystyle{\iint_{\Omega}(4 - y^2) dxdy, \ \Omega}$ is the region bounded by $y^2 = 2x$ and $y^2 = 8 - 2x$ .
2.
Interchange the order of integration.D
(a)
$\displaystyle{\int_{0}^{1}\int_{x^4}^{x^2}f(x,y)dydx}$
(b)
$\displaystyle{\int_{0}^{1}\int_{-y}^{y}f(x,y)dxdy}$
(c)
$\displaystyle{\int_{1}^{4}\int_{x}^{2x}f(x,y)dydx}$
3.
Evaluate the following double integralsD
(a)
$\displaystyle{\int_{0}^{1}\int_{y}^{1}e^{y/x}dxdy}$
(b)
$\displaystyle{\int_{0}^{1}\int_{x}^{1}e^{y^2}dydx}$
(c)
$\displaystyle{\int_{0}^{1} dy \int_{y}^{\sqrt{y}}\frac{\sin{x}}{x}dx}$