6.7 Answer

6.7

1.

(a) Since $f(x,y) = 2x^2 + y^2 - xy -7y$, $f_{x} = 4x - y, f_{y} = 2y - x - 7$. If $f(x,y)$ attains the extreme at $(x_{0},y_{0})$

$\displaystyle f_{x}(x_{0},y_{0}) = 4x_{0} - y_{0} = 0, f_{y}(x_{0},y_{0}) = 2y_{0} - x_{0} - 7 = 0$

Solve this for $x_{0},y_{0}$, we have $x_{0} = 1, y_{0} = 4$. Next for $f_{xx}(x,y) = 4, f_{xy}(x,y) = -1, f_{yy}(x,y) = 2$, $\Delta = f_{xx}f_{yy} - (f_{xy})^2 = 8 -1 = 7 > 0$, we have $\Delta > 0, A = f_{xx}(1,4) = 4 > 0$. Thus $f(1,4) = 2 + 16 - 4 - 28 = -14$ is the local minimum.

(b)

Since $f(x,y) = \frac{x}{y^2} + xy$, we have $f_{x} = \frac{1}{y^2} + y, f_{y} = -\frac{2x}{y^2} + x$. If $f(x,y)$ attains the extreme at $(x_{0},y_{0})$, then

$\displaystyle f_{x}(x_{0},y_{0}) = \frac{1}{y_{0}^2} + y_{0} = 0, f_{y}(x_{0},y_{0}) = -\frac{2x_{0}}{y_{0}^3} + x_{0} = 0$

Solve this for $x_{0},y_{0}$.Then $\frac{1}{y_{0}^2} + y_{0} = 0$ implies $\frac{1 + y_{0}^3}{y_{0}^2} = 0$.Thus, $y_{0} = -1$.Also, $-\frac{2x_{0}}{y_{0}^3} + x_{0} = x_{0}(\frac{-2}{y_{0}^3} + 1) = 0$ implies $x_{0} = 0$

Next, $f_{xx}(x,y) = 0, f_{xy}(x,y) = -\frac{2}{y^3} + 1, f_{yy}(x,y) = \frac{6x}{y^4}$. At $(0,1)$,

$\displaystyle \Delta = f_{xx}(0,1)f_{yy}(0,1) - (f_{xy}(0,1))^2 = -9 < 0$

Therefore, no extremum..

(c)

Since $f(x,y) = x^3 + y^3 - 3xy$, $f_{x} = 3x_{0}^2 - 3y_{0}, f_{y} = -\frac{2x}{y^2} + x$. If $f(x,y)$ attains the extremum at $(x_{0},y_{0})$, then

$\displaystyle f_{x}(x_{0},y_{0})$ $\displaystyle =$ $\displaystyle \frac{1}{y_{0}^2} + y_{0} = 0$ (1.1)
$\displaystyle f_{y}(x_{0},y_{0})$ $\displaystyle =$ $\displaystyle 3y_{0}^2 - 3x_{0} = 0$ (1.2)

Solve this for $x_{0},y_{0}$. Put $y_{0} = x_{0}^2$. Then

$\displaystyle 3x_{0}^4 - 3x_{0} = 3x_{0}(x_{0}^3 - 1) = 0$

Thus, $x_{0} = 0, 1$.Therefore, $(x_{0}=0,y_{0}=0), (x_{0}=1, y_{0} =1)$. Next $f_{xx}(x,y) = 6x, f_{xy}(x,y) = -3, f_{yy}(x,y) = 6y$. At $(0,0)$.

$\displaystyle \Delta = f_{xx}(0,0)f_{yy}(0,0) - (f_{xy}(0,0))^2 = -9 < 0$

Thus,$f(0,0)$ is not extremum. At $(1,1)$, we have

$\displaystyle \Delta = f_{xx}(1,1)f_{yy}(1,1) - (f_{xy}(1,1))^2 = 6\cdot6 - (-3)^2 = 27 > 0 , A = f_{xx}(1,1) = 6 > 0$

Therefore, $f(1,1) = 1 + 1 - 3 = -1$ is the local minimum.

(d)

Since $f(x,y) = (x^2 + y^2)^2ー2(x^2 - y^2)$, we have

$\displaystyle f_{x}$ $\displaystyle =$ $\displaystyle 2(x^2 + y^2)(2x) - 4x = 4x(x^2 + y^2 -1)$  
$\displaystyle f_{y}$ $\displaystyle =$ $\displaystyle 4y(x^2 + y^2) + 4y = 4y(x^2 + y^2 + 1)$  

If $f(x,y)$ attains the extremum at $(x_{0},y_{0})$, then
$\displaystyle f_{x}(x_{0},y_{0})$ $\displaystyle =$ $\displaystyle 4x_{0}(x_{0}^2 + y_{0}^2 -1) = 0$ (1.3)
$\displaystyle f_{y}(x_{0},y_{0})$ $\displaystyle =$ $\displaystyle 4y_{0}(x_{0}^2 + y_{0}^2 + 1) = 0$ (1.4)

Solve this for $x_{0},y_{0}$.Then

$\displaystyle 4x_{0}(x_{0}^2 - 1) = 0$

Thus, $x_{0} = 0, \pm1$.Therefore, $(x_{0}=0,y_{0}=0), (x_{0}=1, y_{0} =0), (x_{0}=-1, y_{0} = 0)$. 次に
$\displaystyle f_{xx}(x,y)$ $\displaystyle =$ $\displaystyle 4(x^2 + y^2 -1) + 8x^2 = 4(3x^2 + y^2 -1)$  
$\displaystyle f_{xy}(x,y)$ $\displaystyle =$ $\displaystyle 8xy$  
$\displaystyle f_{yy}(x,y)$ $\displaystyle =$ $\displaystyle 4(x^2 + y^2 + 1) + 8y^2 = 4(x^2 + 3y^2 + 1)$  

At $(0,0)$, we have

$\displaystyle \Delta = f_{xx}(0,0)f_{yy}(0,0) - (f_{xy}(0,0))^2 = (-4)(4) - 0 = -16 < 0$

Thus,$f(0,0)$ is not extremum. $(1,0)$では

$\displaystyle \Delta = f_{xx}(1,0)f_{yy}(1,0) - (f_{xy}(1,0))^2 = 8\cdot 8 - 0 = 64 > 0 , A = f_{xx}(1,0) = 8 > 0$

Thus, $f(1,0) = -1$ is local minimum. At $(-1,0)$, we have

$\displaystyle \Delta = f_{xx}(-1,0)f_{yy}(-1,0) - (f_{xy}(-1,0))^2 = 8\cdot 8 - 0 = 64 > 0 , A = f_{xx}(-1,0) = 8 > 0$

Thus, $f(-1,0) = -1$ is th elocal minimum.

2. By the Taylor's theorem, we have

$\displaystyle f(x_{0}+h,y_{0}+k)$ $\displaystyle =$ $\displaystyle f(x_{0},y_{0}) + (h\frac{\partial}{\partial x} + k\frac{\partial}...
...\partial}{\partial x} + k\frac{\partial}{\partial y})^2 f(x_{0},y_{0}) + \cdots$  

(a) By the Taylor's theorem, let $x_{0} = 0, y_{0}=0, h = x, k = y$. Then

$\displaystyle f(x,y) = f(0,0) + (x\frac{\partial}{\partial x} + y\frac{\partial...
...(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y})^2 f(0,0) + \cdots$

$\displaystyle f_{x} = e^{x}\cos{y}, f_{y} = -e^{x}\sin{y}$

$\displaystyle f_{xx} = e^{x}\cos{y}, f_{xy} = -e^{x}\sin{y}, f_{yy} = -e^{x}\cos{y}$

Thus

$\displaystyle f_{x}(0,0) = 1, f_{y}(0,0) = 0, f_{xx}(0,0) = 1, f_{xy}(0,0) = 0, f_{yy}(0,0) = -1$

Therefore,,

$\displaystyle f(x,y) = 1 + x + \frac{1}{2}(x^2 - y^2)$

(b) By the Taylor's theorem, we let $x_{0}=2, y_{0} =1, x = x_{0} + h, y = k_{0} + k$. Then

$\displaystyle f(x,y) = f(2,1) + (x\frac{\partial}{\partial x} + y\frac{\partial...
...(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y})^2 f(2,1) + \cdots$

$\displaystyle f_{x} = \frac{1}{x + y^2}, f_{y} = \frac{2y}{x + y^2}$

$\displaystyle f_{xx} = \frac{-1}{(x + y^2)^2}, f_{xy} = -\frac{-2y}{(x+y^2)^2}, f_{yy} = \frac{2(x+y^2)-4y^2}{(x+y^2)^2}$

よって

$\displaystyle f_{x}(2,1) = \frac{1}{3}, f_{y}(2,1) = \frac{2}{3}, f_{xx}(2,1) = \frac{-1}{9}, f_{xy}(2,1) = \frac{-2}{9}, f_{yy}(2,1) = \frac{2}{9}$

したがって,
$\displaystyle f(x,y)$ $\displaystyle =$ $\displaystyle \log{3} + \frac{1}{3}(x-2) + \frac{2}{3}(y-1) + \frac{1}{2}(-\frac{1}{9}(x-2)^2 -\frac{4}{9}(x-2)(y-1) + \frac{2}{9}(y-1)^2$