For the random variable , the value defined by the following equation is called the mean value or expected value (Expectation) of , and is called the variance of
Discrete case
-
-
Continuous case
-
-
Exercise 6
1. For
answer the following questions.
- (a)
- Show that is a probability density function.
- (b)
- Find the distribute function .
- (c)
- Find
.
- (d)
- Find
.
2. When throwing one dice three times, the number of times a 1 is rolled is .Then
- (a)
- find the probability distribution of .
- (b)
- find the expectation and the standard deviation of .
- (c)
- Find the random variable , which is a standardized version of ,Furthermore, find the probability distribution of ..
3. Find the probability of the followings using Bernoulli's theorem.
- (a)
-
When one coin is thrown 1000 times, let be the number of times the head appears. Then find the probability that
- (b)
- When two coins are thrown 1000 times, let be the number of times the head appears on both coins. Then find the probability that
- (c)
- Throw one coin 2000 times and find the probability that the number of heads coming out is less than 50 times from 1000 times.
- (d)
- How many times do we have to throw a coin if after throwing one coin 2000 times, the probability that the difference between the head output rate and the theoretical probability of is within is or more.
Answer
(1)
a
implies
.Also
b
For ,
For
,
For ,,
c
d
これより
2.
a Let be the number of times 1 is rolled. Then
b
したがって,
c Standardization of means changing the mean to 0 and the distribution to 1. Then
Find the probabilty distribution of .
Then
Then
Then
Then
3
a Bernoulli's theorem is when the number of trials is , the number of event occurrences is , and the probability of event occurrence is . Then
b
c The problem is to find the probability that the bias of the number of event occurrences is within 50 when the number of trials is 2000. In other words, find the probability that the error between the percentage of heads appearing in 2000 times
and the theoretical probability
is
. Then using Bernoulli's theorem,
Thus,
d
implies that we find so that
.